About this Journal Submit a Manuscript Table of Contents
Journal of Toxicology
Volume 2012 (2012), Article ID 791431, 17 pages
http://dx.doi.org/10.1155/2012/791431
Research Article

Update on a Pharmacokinetic-Centric Alternative Tier II Program for MMT—Part II: Physiologically Based Pharmacokinetic Modeling and Manganese Risk Assessment

1Health, Safety, Environment, and Security, Afton Chemical Corp., Richmond, VA 23219, USA
2Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709, USA
3College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA

Received 22 October 2011; Accepted 25 January 2012

Academic Editor: Kannan Krishnan

Copyright © 2012 Michael D. Taylor et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Aschner, K. M. Erikson, and D. C. Dorman, “Manganese dosimetry: species differences and implications for neurotoxicity,” Critical Reviews in Toxicology, vol. 35, no. 1, pp. 1–32, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. T. R. Guilarte, “Manganese and Parkinson's disease: a critical review and new findings,” Environmental Health Perspectives, vol. 118, no. 8, pp. 1071–1080, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. Agency for Toxic Substances and Disease Registry (ATSDR), “Toxicological Profile for Manganese,” U.S. Department of Health and Human Services, Atlanta, Ga, USA, 2008, http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=102&tid=23.
  4. U.S. Environmental Protection Agency, “Reevaluation of inhalation risks associated with methylcyclopentadienyl manganese tricarbonyl (MMT) in gasoline,” EPA Office of Research and Development. EPA Air Docket A-93-26 No. II-A-12, 1994.
  5. D. C. Dorman, M. E. Andersen, and M. D. Taylor, “Update on a pharmacokinetic-centric Alternative Tier II Program for MMT. Part I. Program implementation and lessons learned,” Journal of Toxicology, vol. 2012, Article ID 946742, 10 pages, 2012. View at Publisher · View at Google Scholar
  6. W. K. Boyes, “Essentiality, toxicity, and uncertainty in the risk assessment of manganese,” Journal of Toxicology and Environmental Health A, vol. 73, no. 2-3, pp. 159–165, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. M. E. Andersen, J. M. Gearhart, and H. J. Clewell, “Pharmacokinetic data needs to support risk assessments for inhaled and ingested manganese,” NeuroToxicology, vol. 20, no. 2-3, pp. 161–172, 1999. View at Scopus
  8. D. C. Dorman, M. F. Struve, H. J. Clewell, and M. E. Andersen, “Application of pharmacokinetic data to the risk assessment of inhaled manganese,” NeuroToxicology, vol. 27, no. 5, pp. 752–764, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. J. G. Teeguarden, D. C. Dorman, T. R. Covington, H. J. Clewell, and M. E. Andersen, “Pharmacokinetic modeling of manganese. I. Dose dependencies of uptake and elimination,” Journal of Toxicology and Environmental Health A, vol. 70, no. 18, pp. 1493–1504, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. J. G. Teeguarden, D. C. Dorman, A. Nong, T. R. Covington, H. J. Clewell, and M. E. Andersen, “Pharmacokinetic modeling of manganese. II. Hepatic processing after ingestion and inhalation,” Journal of Toxicology and Environmental Health A, vol. 70, no. 18, pp. 1505–1514, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. L. MacCalman, C. L. Tran, and E. Kuempel, “Development of a bio-mathematical model in rats to describe clearance, retention and translocation of inhaled nano particles throughout the body,” Journal of Physics: Conference Series, vol. 151, Article ID 012028, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. J. G. Teeguarden, J. Gearhart, H. J. Clewell, T. R. Covington, A. Nong, and M. E. Andersen, “Pharmacokinetic modeling of manganese. III. Physiological approaches accounting for background and tracer kinetics,” Journal of Toxicology and Environmental Health A, vol. 70, no. 18, pp. 1515–1526, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Nong, J. G. Teeguarden, H. J. Clewell, D. C. Dorman, and M. E. Andersen, “Pharmacokinetic modeling of manganese in the rat IV: assessing factors that contribute to brain accumulation during inhalation exposure,” Journal of Toxicology and Environmental Health A, vol. 71, no. 7, pp. 413–426, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Nong, M. D. Taylor, H. J. Clewell, D. C. Dorman, and M. E. Andersen, “Manganese tissue dosimetry in rats and monkeys: accounting for dietary and inhaled Mn with physiologically based pharmacokinetic modeling,” Toxicological Sciences, vol. 108, no. 1, pp. 22–34, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Yoon, A. Nong, H. J. Clewell, M. D. Taylor, D. C. Dorman, and M. E. Andersen, “Lactational transfer of manganese in rats: predicting manganese tissue concentration in the dam and pups from inhalation exposure with a pharmacokinetic model,” Toxicological Sciences, vol. 112, no. 1, pp. 23–43, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Yoon, A. Nong, H. J. Clewell, M. D. Taylor, D. C. Dorman, and M. E. Andersen, “Evaluating placental transfer and tissue concentrations of manganese in the pregnant rat and fetuses after inhalation exposures with a PBPK model,” Toxicological Sciences, vol. 112, no. 1, pp. 44–58, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Anjilvel and B. Asgharian, “A multiple-path model of particle deposition in the rat lung,” Fundamental and Applied Toxicology, vol. 28, no. 1, pp. 41–50, 1995. View at Publisher · View at Google Scholar · View at Scopus
  18. J. D. Schroeter, J. S. Kimbell, E. A. Gross et al., “Application of physiological computational fluid dynamics models to predict interspecies nasal dosimetry of inhaled acrolein,” Inhalation Toxicology, vol. 20, no. 3, pp. 227–243, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. J. D. Schroeter, A. Nong, M. Yoon et al., “Analysis of manganese tracer kinetics and target tissue dosimetry in monkeys and humans with multi-route physiologically based pharmacokinetic models,” Toxicological Sciences, vol. 120, no. 2, pp. 481–498, 2011. View at Publisher · View at Google Scholar
  20. M. Yoon, J. D. Schroeter, A. Nong et al., “Physiologically based pharmacokinetic modeling of fetal and neonatal manganese exposure in humans: describing manganese homeostasis during development,” Toxicological Sciences, vol. 122, no. 2, pp. 297–316, 2011. View at Publisher · View at Google Scholar
  21. D. C. Dorman, M. F. Struve, M. W. Marshall, C. U. Parkinson, R. A. James, and B. A. Wong, “Tissue manganese concentrations in young male rhesus monkeys following subchronic manganese sulfate inhalation,” Toxicological Sciences, vol. 92, no. 1, pp. 201–210, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Nagase, Y. Fukuchi, S. Teramoto, T. Matsuse, and H. Orimo, “Mechanical interdependence in relation to age: effects of lung volume on airway resistance in rats,” Journal of Applied Physiology, vol. 77, no. 3, pp. 1172–1177, 1994. View at Scopus
  23. P. H. Saldiva, M. P. Caldeira, and W. A. Zin, “Respiratory mechanics in the aging rat,” Brazilian Journal of Medical and Biological Research, vol. 21, no. 4, pp. 863–868, 1988. View at Scopus
  24. J. L. Aschner and M. Aschner, “Nutritional aspects of manganese homeostasis,” Molecular Aspects of Medicine, vol. 26, no. 4-5, pp. 353–362, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. H. J. Clewell III, G. A. Lawrence, D. B. Calne, and K. S. Crump, “Determination of an occupational exposure guideline for manganese using the benchmark method,” Risk Analysis, vol. 23, no. 5, pp. 1031–1046, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. U.S. Environmental Protection Agency (USEPA), “Integrated Risk Information System (IRIS) Manganese (CASRN 7439-96-5) Reference Concentration for Chronic Inhalation Exposure (RfC),” 1993, http://www.epa.gov/iris/subst/0373.htm.
  27. M. E. Meek, A. Renwick, E. Ohanian et al., “Guidelines for application of chemical-specific adjustment factors in dose/concentration-response assessment,” Toxicology, vol. 181-182, pp. 115–120, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. U.S. Environmental Protection Agency Office of the Science Advisor, “Guidance for Applying Quantitative Data to Develop Data-Derived Extrapolation Factors for Interspecies and Intraspecies Extrapolation,” 2011, http://www.epa.gov/raf/DDEF/index.htm.
  29. M. S. Desole, G. Esposito, R. Migheli et al., “Cellular defence mechanisms in the striatum of young and aged rats subchronically exposed to manganese,” Neuropharmacology, vol. 34, no. 3, pp. 289–295, 1995. View at Publisher · View at Google Scholar · View at Scopus
  30. A. B. Santamaria, C. A. Cushing, J. M. Antonini, B. L. Finley, and F. S. Mowat, “State-of-the-science review: does manganese exposure during welding pose a neurological risk?” Journal of Toxicology and Environmental Health B, vol. 10, no. 6, pp. 417–465, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. D. C. Dorman, B. E. McManus, M. W. Marshall, R. A. James, and M. F. Struve, “Old age and gender influence the pharmacokinetics of inhaled manganese sulfate and manganese phosphate in rats,” Toxicology and Applied Pharmacology, vol. 197, no. 2, pp. 113–124, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. D. L. Schmucker, “Aging and the liver: an update,” Journals of Gerontology A, vol. 53, no. 5, pp. B315–B320, 1998. View at Scopus
  33. S. O. Ross and C. E. Forsmark, “Pancreatic and biliary disorders in the elderly,” Gastroenterology Clinics of North America, vol. 30, no. 2, pp. 531–545, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. L. Wang, F. H. Y. Green, S. M. Smiley-Jewell, and K. E. Pinkerton, “Susceptibility of the aging lung to environmental injury,” Seminars in Respiratory and Critical Care Medicine, vol. 31, no. 5, pp. 539–553, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Bhutto and J. E. Morley, “The clinical significance of gastrointestinal changes with aging,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 11, no. 5, pp. 651–660, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. J. A. Menezes-Filho, M. Bouchard, P. De, and J. C. Moreira, “Manganese exposure and the neuropsychological effect on children and adolescents: a review,” Revista Panamericana de Salud Publica, vol. 26, no. 6, pp. 541–548, 2009. View at Scopus
  37. B. S. Winder, A. G. Salmon, and M. A. Marty, “Inhalation of an essential metal: development of reference exposure levels for manganese,” Regulatory Toxicology and Pharmacology, vol. 57, no. 2-3, pp. 195–199, 2010. View at Publisher · View at Google Scholar
  38. M. Aschner, “Manganese: Brain transport and emerging research needs,” Environmental Health Perspectives, vol. 108, no. 3, pp. 429–432, 2000. View at Scopus
  39. C. Rose, R. F. Butterworth, J. Zayed et al., “Manganese deposition in basal ganglia structures results from both portal-systemic shunting and liver dysfunction,” Gastroenterology, vol. 117, no. 3, pp. 640–644, 1999. View at Publisher · View at Google Scholar · View at Scopus
  40. L. Annet, R. Materne, E. Danse, J. Jamart, Y. Horsmans, and B. E. Van Beers, “Hepatic flow parameters measured with MR imaging and Doppler US: correlations with degree of cirrhosis and portal hypertension,” Radiology, vol. 229, no. 2, pp. 409–414, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. J. E. Restrepo and W. D. Warren, “Total liver blood flow after portacaval shunts, hepatic artery ligation and 70 per cent hepatectomy,” Annals of surgery, vol. 156, pp. 719–726, 1962. View at Scopus
  42. D. R. Hunt, “Changes in liver flow with development of biliary obstruction in the rat,” Australian and New Zealand Journal of Surgery, vol. 49, no. 6, pp. 733–737, 1979. View at Scopus
  43. M. H. F. El-Shabrawi, M. El-Raziky, M. Sheiba et al., “Value of duplex doppler ultrasonography in non-invasive assessment of children with chronic liver disease,” World Journal of Gastroenterology, vol. 16, no. 48, pp. 6139–6144, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Trauner, P. J. Meier, and J. L. Boyer, “Molecular regulation of hepatocellular transport systems in cholestasis,” Journal of Hepatology, vol. 31, no. 1, pp. 165–178, 1999. View at Publisher · View at Google Scholar
  45. E. A. Rodriguez-Garay, C. Larocca, G. Pisani, M. Del Luján Alvarez, and G. P. Rodriguez, “Adaptive hepatic changes in mild stenosis of the common bile duct in the rat,” Research in Experimental Medicine, vol. 198, no. 6, pp. 307–323, 1999. View at Publisher · View at Google Scholar · View at Scopus
  46. J. B. Das, I. L. Uzoaru, and G. G. Ansari, “Biliary lithocholate and cholestasis during and after total parenteral nutrition: an experimental study,” Proceedings of the Society for Experimental Biology and Medicine, vol. 210, no. 3, pp. 253–259, 1995. View at Scopus
  47. M. B. Reddy, R. S. H. Yang, M. E. Andersen, and H. J. Clewell III, Physiologically Based Pharmacokinetic Modeling: Science and Applications, Wiley, Hoboken, NJ, USA, 2005.
  48. Institute of Medicine (IOM) The National Academy of Sciences, Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc, National Academy Press, Washington, DC, USA, 2001.
  49. C. E. Hack, T. R. Covington, G. Lawrence et al., “A pharmacokinetic model of the intracellular dosimetry of inhaled nickel,” Journal of Toxicology and Environmental Health A, vol. 70, no. 5, pp. 445–464, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. P. S. Price, R. B. Conolly, C. F. Chaisson et al., “Modeling interindividual variation in physiological factors used in PBPK models of humans,” Critical Reviews in Toxicology, vol. 33, no. 5, pp. 469–503, 2003. View at Scopus
  51. S. F. Clark, “Iron deficiency anemia,” Nutrition in Clinical Practice, vol. 23, no. 2, pp. 128–141, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. K. M. Erikson, T. Syversen, E. Steinnes, and M. Aschner, “Globus pallidus: a target brain region for divalent metal accumulation associated with dietary iron deficiency,” Journal of Nutritional Biochemistry, vol. 15, no. 6, pp. 335–341, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. V. A. Fitsanakis, N. Zhang, M. J. Avison, K. M. Erikson, J. C. Gore, and M. Aschner, “Changes in dietary iron exacerbate regional brain manganese accumulation as determined by magnetic resonance imaging,” Toxicological Sciences, vol. 120, no. 1, pp. 146–153, 2011. View at Publisher · View at Google Scholar
  54. J. D. Park, K. Y. Kim, D. W. Kim et al., “Tissue distribution of manganese in iron-sufficient or iron-deficient rats after stainless steel welding-fume exposure,” Inhalation Toxicology, vol. 19, no. 6-7, pp. 563–572, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. K. M. Erikson and M. Aschner, “Increased manganese uptake by primary astrocyte cultures with altered iron status is mediated primarily by divalent metal transporter,” NeuroToxicology, vol. 27, no. 1, pp. 125–130, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. B. B. Williams, G. F. Kwakye, M. Wegrzynowicz et al., “Altered manganese homeostasis and manganese toxicity in a huntington's disease striatal cell model are not explained by defects in the iron transport system,” Toxicological Sciences, vol. 117, no. 1, pp. 169–179, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. R. S. H. Yang, L. W. Chang, C. S. Yang, and P. Lin, “Pharmacokinetics and physiologically-based pharmacokinetic modeling of nanoparticles,” Journal of Nanoscience and Nanotechnology, vol. 10, no. 12, pp. 8482–8490, 2010. View at Publisher · View at Google Scholar
  58. Y. S. Cheng, H. C. Yeh, R. A. Guilmette, S. Q. Simpson, K. H. Cheng, and D. L. Swift, “Nasal deposition of ultrafine particles in human volunteers and its relationship to airway geometry,” Aerosol Science and Technology, vol. 25, no. 3, pp. 274–291, 1996. View at Scopus
  59. M. Simkó and M. O. Mattsson, “Risks from accidental exposures to engineered nanoparticles and neurological health effects: a critical review,” Particle and Fibre Toxicology, vol. 7, article no. 42, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. W. Yang, J. I. Peters, and R. O. Williams, “Inhaled nanoparticles—a current review,” International Journal of Pharmaceutics, vol. 356, no. 1-2, pp. 239–247, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. W. I. Hagens, A. G. Oomen, W. H. de Jong, F. R. Cassee, and A. J. A. M. Sips, “What do we (need to) know about the kinetic properties of nanoparticles in the body?” Regulatory Toxicology and Pharmacology, vol. 49, no. 3, pp. 217–229, 2007. View at Publisher · View at Google Scholar
  62. M. Li, K. T. Al-Jamal, K. Kostarelos, and J. Reineke, “Physiologically based pharmacokinetic modeling of nanoparticles,” ACS Nano, vol. 4, no. 11, pp. 6303–6317, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. A. R. R. Péry, C. Brochot, P. H. M. Hoet, A. Nemmar, and F. Y. Bois, “Development of a physiologically based kinetic model for 99m-Technetium-labelled carbon nanoparticles inhaled by humans Human PBPK model for carbon nanoparticles,” Inhalation Toxicology, vol. 21, no. 13, pp. 1099–1107, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. D. P. K. Lankveld, A. G. Oomen, P. Krystek et al., “The kinetics of the tissue distribution of silver nanoparticles of different sizes,” Biomaterials, vol. 31, no. 32, pp. 8350–8361, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. G. Oszlánczi, T. Vezér, L. Sárközi, E. Horváth, Z. Kónya, and A. Papp, “Functional neurotoxicity of Mn-containing nanoparticles in rats,” Ecotoxicology and Environmental Safety, vol. 73, no. 8, pp. 2004–2009, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Elder, R. Gelein, V. Silva et al., “Translocation of inhaled ultrafine manganese oxide particles to the central nervous system,” Environmental Health Perspectives, vol. 114, no. 8, pp. 1172–1178, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. T. L. Leavens, D. Rao, M. E. Andersen, and D. C. Dorman, “Evaluating transport of manganese from olfactory mucosa to striatum by pharmacokinetic modeling,” Toxicological Sciences, vol. 97, no. 2, pp. 265–278, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. D. C. Dorman, M. F. Struve, B. A. Wong, J. A. Dye, and I. D. Robertson, “Correlation of brain magnetic resonance imaging changes with pallidal manganese concentrations in rhesus monkeys following subchronic manganese inhalation,” Toxicological Sciences, vol. 92, no. 1, pp. 219–227, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. D. Vitarella, O. Moss, and D. C. Dorman, “Pulmonary clearance of manganese phosphate, manganese sulfate, and manganese tetraoxide by CD rats following intratracheal instillation,” Inhalation Toxicology, vol. 12, no. 10, pp. 941–957, 2000. View at Scopus
  70. S. M. Hussain, A. K. Javorina, A. M. Schrand, H. M. H. M. Duhart, S. F. Ali, and J. J. Schlager, “The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion,” Toxicological Sciences, vol. 92, no. 2, pp. 456–463, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. R. Gwiazda, R. Lucchini, and D. Smith, “Adequacy and consistency of animal studies to evaluate the neurotoxicity of chronic low-level manganese exposure in humans,” Journal of Toxicology and Environmental Health A, vol. 70, no. 7, pp. 594–605, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. M. E. Andersen, D. C. Dorman, H. J. Clewell III, M. D. Taylor, and A. Nong, “Multi-dose-route, Multi-Species pharmacokinetic models for manganese and their use in risk assessment,” Journal of Toxicology and Environmental Health A, vol. 73, no. 2-3, pp. 217–234, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Lu and D. Fu, “Structure of the zinc transporter YiiP,” Science, vol. 317, no. 5845, pp. 1746–1748, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. B. R. Chandra, M. Yogavel, and A. Sharma, “Structural analysis of ABC-family periplasmic zinc binding protein provides new insights into mechanism of ligand uptake and release,” Journal of Molecular Biology, vol. 367, no. 4, pp. 970–982, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. R. J. McMahon and R. J. Cousins, “Mammalian zinc transporters,” Journal of Nutrition, vol. 128, no. 4, pp. 667–670, 1998. View at Scopus
  76. D. H. Nies, “How cells control zinc homeostasis,” Science, vol. 317, no. 5845, pp. 1695–1696, 2007. View at Publisher · View at Google Scholar · View at Scopus