About this Journal Submit a Manuscript Table of Contents
Journal of Toxicology
Volume 2013 (2013), Article ID 370460, 8 pages
http://dx.doi.org/10.1155/2013/370460
Research Article

The Benefits and Risks of Consuming Brewed Tea: Beware of Toxic Element Contamination

1University of Alberta, Number 301, 9509-156 Street, Edmonton, AB, Canada T5P 4J5
2University of Alberta, 2935-66 Street, Edmonton, AB, Canada T6K 4C1
3Luleå University of Technology, Aurorum 10, 977 75 Luleå, Sweden

Received 30 July 2013; Accepted 9 September 2013

Academic Editor: Lucio Guido Costa

Copyright © 2013 Gerry Schwalfenberg et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Álvarez-Ayuso, A. Giménez, and J. C. Ballesteros, “Fluoride accumulation by plants grown in acid soils amended with flue gas desulphurisation gypsum,” Journal of Hazardous Materials, vol. 192, no. 3, pp. 1659–1666, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. Z. Tan and G. Xiao, “Leaching characteristics of fly ash from Chinese medical waste incineration,” Waste Management and Research, vol. 30, no. 3, pp. 285–294, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Fujimaki Hayacibara, C. S. Queiroz, C. P. Machado Tabchoury, and J. Aparecido Cury, “Fluoride and aluminum in teas and tea-based beverages,” Revista de Saude Publica, vol. 38, no. 1, pp. 100–105, 2004. View at Scopus
  4. S.-C. C. Lung, H.-W. Cheng, and C. B. Fu, “Potential exposure and risk of fluoride intakes from tea drinks produced in Taiwan,” Journal of Exposure Science and Environmental Epidemiology, vol. 18, no. 2, pp. 158–166, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. X.-P. Wang, Y.-J. Ma, and Y.-C. Xu, “Studies on contents of arsenic, selenium, mercury and bismuth in tea samples collected from different regions by atomic fluorescence spectrometry,” Guang Pu Xue Yu Guang Pu Fen Xi, vol. 28, no. 7, pp. 1653–1657, 2008. View at Scopus
  6. W.-Y. Han, F.-J. Zhao, Y.-Z. Shi, L.-F. Ma, and J.-Y. Ruan, “Scale and causes of lead contamination in Chinese tea,” Environmental Pollution, vol. 139, no. 1, pp. 125–132, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Shekoohiyan, M. Ghoochani, A. Mohagheghian, A. H. Mahvi, M. Yunesian, and S. Nazmara, “Determination of lead, cadmium and arsenic in infusion tea cultivated in north of Iran,” Iranian Journal of Environmental Health Science & Engineering, vol. 9, article 37, 2012.
  8. F. Perera, T.-Y. Li, Z.-J. Zhou et al., “Benefits of reducing prenatal exposure to coal-burning pollutants to children's neurodevelopment in China,” Environmental Health Perspectives, vol. 116, no. 10, pp. 1396–1400, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Tang, T.-Y. Li, J. J. Liu et al., “Effects of prenatal exposure to coal-burning pollutants on children's development in China,” Environmental Health Perspectives, vol. 116, no. 5, pp. 674–679, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. X.-X. Zheng, Y.-L. Xu, S.-H. Li, X.-X. Liu, R. Hui, and X.-H. Huang, “Green tea intake lowers fasting serum total and LDL cholesterol in adults: a meta-analysis of 14 randomized controlled trials,” American Journal of Clinical Nutrition, vol. 94, no. 2, pp. 601–610, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. Z.-M. Wang, B. Zhou, Y.-S. Wang et al., “Black and green tea consumption and the risk of coronary artery disease: a meta-analysis,” American Journal of Clinical Nutrition, vol. 93, no. 3, pp. 506–515, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Ali and M. Afzal, “A potent inhibitor of thrombin stimulated platelet thromboxane formation from unprocessed tea,” Prostaglandins Leukotrienes and Medicine, vol. 27, no. 1, pp. 9–13, 1987. View at Scopus
  13. W.-S. Kang, I.-H. Lim, D.-Y. Yuk et al., “Antithrombotic activities of green tea catechins and (-)-epigallocatechin gallate,” Thrombosis Research, vol. 96, no. 3, pp. 229–237, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Bogdanski, J. Suliburska, M. Szulinska, M. Stepien, D. Pupek-Musialik, and A. Jablecka, “Green tea extract reduces blood pressure, inflammatory biomarkers, and oxidative stress and improves parameters associated with insulin resistance in obese, hypertensive patients,” Nutrition Research, vol. 32, pp. 421–427, 2012.
  15. K. Boehm, F. Borrelli, E. Ernst et al., “Green tea (Camellia sinensis) for the prevention of cancer,” The Cochrane Database of Systematic Reviews, no. 3, Article ID CD005004, 2009. View at Scopus
  16. B. J. Fuhrman, R. M. Pfeiffer, A. H. Wu et al., “Green tea intake is associated with urinary estrogen profiles in Japanese-American women,” Nutrition Journal, vol. 12, article 25, 2013.
  17. J. A. Montague, L. M. Butler, A. H. Wu, et al., “Green and black tea intake in relation to prostate cancer risk among Singapore Chinese,” Cancer Causes Control, vol. 23, pp. 1635–1641, 2012.
  18. J. S. Zheng, J. Yang, Y. Q. Fu, T. Huang, Y. J. Huang, and D. Li, “Effects of green tea, black tea, and coffee consumption on the risk of esophageal cancer: a systematic review and meta-analysis of observational studies,” Nutrition and Cancer, vol. 65, no. 1, pp. 1–16, 2013. View at Publisher · View at Google Scholar
  19. T. M. Jurgens, A. M. Whelan, L. Killian, S. Doucette, S. Kirk, and E. Foy, “Green tea for weight loss and weight maintenance in overweight or obese adults,” The Cochrane Database of Systematic Reviews, vol. 12, Article ID 008650, 2012.
  20. M. Maeda-Yamamoto, “Human clinical studies of tea polyphenols in allergy or life style-related diseases,” Current Pharmaceutical Design, vol. 19, no. 34, pp. 6148–6155, 2013.
  21. J. Yan, Y. Zhao, S. Suo, Y. Liu, and B. Zhao, “Green tea catechins ameliorate adipose insulin resistance by improving oxidative stress,” Free Radical Biology and Medicine, vol. 52, no. 9, pp. 1648–1657, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. K. C. Silva, M. A. Rosales, D. E. Hamassaki, et al., “Green tea is neuroprotective in diabetic retinopathy,” Investigative Ophthalmology & Visual Science, vol. 54, pp. 1325–1336, 2013.
  23. M.-Y. Kang, Y. H. Park, B. S. Kim et al., “Preventive effects of green tea (Camellia Sinensis var. Assamica) on diabetic nephropathy,” Yonsei Medical Journal, vol. 53, no. 1, pp. 138–144, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Araghizadeh, J. Kohanteb, and M. M. Fani, “Inhibitory activity of green tea (Camellia sinensis) extract on some clinically isolated cariogenic and periodontopathic bacteria,” Medical Principles and Practice, vol. 22, no. 4, pp. 368–372, 2013.
  25. J. Steinmann, J. Buer, T. Pietschmann, and E. Steinmann, “Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea,” British Journal of Pharmacology, vol. 168, pp. 1059–1073, 2013.
  26. R. Canuel, S. B. de Grosbois, M. Lucotte, L. Atikessé, C. Larose, and I. Rheault, “New evidence on the effects of tea on mercury metabolism in humans,” Archives of Environmental and Occupational Health, vol. 61, no. 5, pp. 232–238, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. M. He and W.-X. Wang, “Factors affecting the bioaccessibility of methylmercury in several marine fish species,” Journal of Agricultural and Food Chemistry, vol. 59, no. 13, pp. 7155–7162, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. W. Liu, Z. Xu, H. Yang, Y. Deng, B. Xu, and Y. Wei, “The protective effects of tea polyphenols and schisandrin B on nephrotoxicity of mercury,” Biological Trace Element Research, vol. 143, no. 3, pp. 1651–1665, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. O. Ouédraogo and M. Amyot, “Effects of various cooking methods and food components on bioaccessibility of mercury from fish,” Environmental Research, vol. 111, no. 8, pp. 1064–1069, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. “Tea and coffee with your fish?” Harvard Health Letter, vol. 37, no. 3, article 7, 2012.
  31. N. M. Pham, A. Nanri, K. Kurotani et al., “Green tea and coffee consumption is inversely associated with depressive symptoms in a Japanese working population,” Public Health Nutrition, 2013. View at Publisher · View at Google Scholar
  32. K. Niu, A. Hozawa, S. Kuriyama et al., “Green tea consumption is associated with depressive symptoms in the elderly,” American Journal of Clinical Nutrition, vol. 90, no. 6, pp. 1615–1622, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Davinelli, N. Sapere, D. Zella, R. Bracale, M. Intrieri, and G. Scapagnini, “Pleiotropic protective effects of phytochemicals in Alzheimer's disease,” Oxidative Medicine and Cellular Longevity, vol. 2012, Article ID 386527, 11 pages, 2012. View at Publisher · View at Google Scholar
  34. World Health Organization, “Global assessment of the state-of-the-science of endocrine disruptors,” Geneva, Switzerland, pp. 1–180, 2002.
  35. Y. W. Chen, C. F. Huang, C. Y. Yang, C. C. Yen, K. S. Tsai, and S. H. Liu, “Inorganic mercury causes pancreatic β-cell death via the oxidative stress-induced apoptotic and necrotic pathways,” Toxicology and Applied Pharmacology, vol. 243, no. 3, pp. 323–331, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. E. A. Belyaeva, T. V. Sokolova, L. V. Emelyanova, and I. O. Zakharova, “Mitochondrial electron transport chain in heavy metal-induced neurotoxicity: effects of cadmium, mercury, and copper,” The Scientific World Journal, vol. 2012, Article ID 136063, 14 pages, 2012. View at Publisher · View at Google Scholar
  37. L. Hu, J. B. Greer, H. Solo-Gabriele, L. A. Fieber, and Y. Cai, “Arsenic toxicity in the human nerve cell line SK-N-SH in the presence of chromium and copper,” Chemosphere, vol. 91, no. 8, pp. 1082–1087, 2013. View at Publisher · View at Google Scholar
  38. M. Valko, H. Morris, and M. T. D. Cronin, “Metals, toxicity and oxidative stress,” Current Medicinal Chemistry, vol. 12, no. 10, pp. 1161–1208, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. A. R. Nair, O. Degheselle, K. Smeets, E. Van Kerkhove, and A. Cuypers, “Cadmium-induced pathologies: where is the oxidative balance lost (or not)?” International Journal of Molecular Sciences, vol. 14, no. 3, pp. 6116–6143, 2013. View at Publisher · View at Google Scholar
  40. N. F. Kolachi, T. G. Kazi, H. I. Afridi et al., “Status of toxic metals in biological samples of diabetic mothers and their neonates,” Biological Trace Element Research, vol. 143, no. 1, pp. 196–212, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Jomova, D. Vondrakova, M. Lawson, and M. Valko, “Metals, oxidative stress and neurodegenerative disorders,” Molecular and Cellular Biochemistry, vol. 345, no. 1-2, pp. 91–104, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. S. J. Genuis, “Sensitivity-related illness: the escalating pandemic of allergy, food intolerance and chemical sensitivity,” The Science of the Total Environment, vol. 408, no. 24, pp. 6047–6061, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. P. Moszczyński, J. Rutowski, S. Słowiński, and S. Bem, “Immunological effects of occupational exposure to metallic mercury in the population of T-cells and NK-cells,” Analyst, vol. 123, no. 1, pp. 99–103, 1998. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Guerrero-Bosagna and M. K. Skinner, “Environmentally induced epigenetic transgenerational inheritance of phenotype and disease,” Molecular and Cellular Endocrinology, vol. 354, no. 1-2, pp. 3–8, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. M. K. Skinner, “Role of epigenetics in developmental biology and transgenerational inheritance,” Birth Defects Research C, vol. 93, no. 1, pp. 51–55, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. M. E. Sears, K. J. Kerr, and R. I. Bray, “Arsenic, cadmium, lead, and mercury in sweat: a systematic review,” Journal of Environmental and Public Health, vol. 2012, Article ID 184745, 10 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. M. E. Sears and S. J. Genuis, “Environmental determinants of chronic disease and medical approaches: recognition, avoidance, supportive therapy, and detoxification,” Journal of Environmental and Public Health, vol. 2012, Article ID 356798, 15 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  48. S. J. Genuis, “Elimination of persistent toxicants from the human body,” Human and Experimental Toxicology, vol. 30, no. 1, pp. 3–18, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. T. W. Clarkson, “Factors involved in heavy metal poisoning,” Federation Proceedings, vol. 36, no. 5, pp. 1634–1639, 1977. View at Scopus
  50. T. I. Lidsky and J. S. Schneider, “Lead neurotoxicity in children: basic mechanisms and clinical correlates,” Brain, vol. 126, no. 1, pp. 5–19, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. S. J. Genuis, G. Schwalfenberg, A. K. Siy, and I. Rodushkin, “Toxic element contamination of natural health products and pharmaceutical preparations,” PLoS One, vol. 7, no. 11, Article ID e49676, 2012. View at Publisher · View at Google Scholar
  52. M. A. Rahman, B. Rahman, and N. Ahmed, “High blood manganese in iron-deficient children in Karachi,” Public Health Nutrition, vol. 16, no. 9, pp. 1677–1683, 2013. View at Publisher · View at Google Scholar
  53. F. M. Crinella, “Does soy-based infant formula cause ADHD? Update and public policy considerations,” Expert Review of Neurotherapeutics, vol. 12, no. 4, pp. 395–407, 2012. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. Wang, H. Jing, V. Mehta, G. J. Welter, and D. E. Giammar, “Impact of galvanic corrosion on lead release from aged lead service lines,” Water Research, vol. 46, pp. 5049–5060, 2012.
  55. R. W. Sheets, “Release of heavy metals from European and Asian porcelain dinnerware,” The Science of the Total Environment, vol. 212, no. 2-3, pp. 107–113, 1998. View at Publisher · View at Google Scholar · View at Scopus
  56. Centers for Disease Control, Department of Health and Human Services, “Fourth National Report on Human Exposure to Environmental Chemicals,” Atlanta, Ga, USA, pp.1–529, 2009, http://www.cdc.gov/exposurereport/pdf/FourthReport.pdf.
  57. World Health Organization, “Children's Health and the Environment. WHO Training Package for the Health Sector,” World Health Organization, 2009, http://www.who.int/ceh/en/.
  58. D. Coury, “Biological influences on brain and behavior,” in Proceedings of the Pediatric Academic Societies' Annual Meeting: Adolescent Medicine, Baltimore, Md, USA, 2001.