About this Journal Submit a Manuscript Table of Contents
Journal of Toxicology
Volume 2013 (2013), Article ID 931785, 10 pages
http://dx.doi.org/10.1155/2013/931785
Research Article

In Vitro Toxicity Evaluation of Engineered Cadmium-Coated Silica Nanoparticles on Human Pulmonary Cells

1Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
2Laboratory of Clinical Toxicology, IRCCS Maugeri Foundation, Medical Institute of Pavia, 27100 Pavia, Italy
3Department of Chemistry, University of Pavia, 27100 Pavia, Italy

Received 29 July 2013; Accepted 26 August 2013

Academic Editor: Michael Cunningham

Copyright © 2013 Uliana De Simone et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Marano, S. Hussain, F. Rodrigues-Lima, A. Baeza-Squiban, and S. Boland, “Nanoparticles: molecular targets and cell signalling,” Archives of Toxicology, vol. 85, no. 7, pp. 733–741, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. A. D. Maynard, R. J. Aitken, T. Butz et al., “Safe handling of nanotechnology,” Nature, vol. 444, no. 7117, pp. 267–269, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Oberdörster, E. Oberdörster, and J. Oberdörster, “Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles,” Environmental Health Perspectives, vol. 113, no. 7, pp. 823–839, 2005. View at Publisher · View at Google Scholar
  4. G. Oberdörster, A. Maynard, K. Donaldson et al., “Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy,” Particle and Fibre Toxicology, vol. 2, article 8, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Ahmed, H. Fessi, and A. Elaissari, “Theranostic applications of nanoparticles in cancer,” Drug Discovery Today, vol. 17, no. 19-20, pp. 1147–1154, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Mahmoudi, V. Serpooshan, and S. Laurent, “Engineered nanoparticles for biomolecular imaging,” Nanoscale, vol. 3, no. 8, pp. 3007–3026, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. V. Mamaeva, C. Sahlgren, and M. Lindén, “Mesoporous silica nanoparticles in medicine-recent advances,” Advanced Drug Delivery Reviews, vol. 65, no. 5, pp. 689–702, 2013. View at Publisher · View at Google Scholar
  8. B. A. Rzigalinski and J. S. Strobl, “Cadmium-containing nanoparticles: perspectives on pharmacology and toxicology of quantum dots,” Toxicology and Applied Pharmacology, vol. 238, no. 3, pp. 280–288, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Simovic, N. Ghouchi-Eskandar, A. M. Sinn, D. Losic, and C. A. Prestidge, “Silica materials in drug delivery applications,” Current Drug Discovery Technologies, vol. 8, no. 3, pp. 269–276, 2011. View at Scopus
  10. J. L. Vivero-Escoto, I. I. Slowing, B. G. Trewyn, and V. S.-Y. Lin, “Mesoporous silica nanoparticles for intracellular controlled drug delivery,” Small, vol. 6, no. 18, pp. 1952–1967, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. W.-S. Cho, M. Choi, B. S. Han et al., “Inflammatory mediators induced by intratracheal instillation of ultrafine amorphous silica particles,” Toxicology Letters, vol. 175, no. 1–3, pp. 24–33, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. H.-J. Eom and J. Choi, “Oxidative stress of silica nanoparticles in human bronchial epithelial cell, Beas-2B,” Toxicology in Vitro, vol. 23, no. 7, pp. 1326–1332, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Gazzano, M. Chiazza, M. Polimeri et al., “Physicochemical determinants in the cellular responses to nanostructured amorphous silicas,” Toxicological Sciences, vol. 128, no. 1, pp. 158–170, 2012. View at Publisher · View at Google Scholar
  14. T. Kaewamatawong, A. Shimada, M. Okajima et al., “Acute and subacute pulmonary toxicity of low dose of ultrafine colloidal silica particles in mice after intratracheal instillation,” Toxicologic Pathology, vol. 34, no. 7, pp. 958–965, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. W.-K. Lee, B. Torchalski, N. Kohistani, and F. Thévenod, “ABCB1 protects kidney proximal tubule cells against cadmium-induced apoptosis: roles of cadmium and ceramide transport,” Toxicological Sciences, vol. 121, no. 2, pp. 343–356, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Lin, Y.-W. Huang, X.-D. Zhou, and Y. Ma, “In vitro toxicity of silica nanoparticles in human lung cancer cells,” Toxicology and Applied Pharmacology, vol. 217, no. 3, pp. 252–259, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Napierska, L. C. J. Thomassen, D. Lison, J. A. Martens, and P. H. Hoet, “The nanosilica hazard: another variable entity,” Particle and Fibre Toxicology, vol. 7, article 39, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Panas, C. Marquardt, O. Nalcaci et al., “Screening of different metal oxide nanoparticles reveals selective toxicity and inflammatory potential of silica nanoparticles in lung epithelial cells and macrophages,” Nanotoxicology, vol. 7, no. 3, pp. 259–273, 2013.
  19. E.-J. Park and K. Park, “Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro,” Toxicology Letters, vol. 184, no. 1, pp. 18–25, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Nogué, P. Sanz-Gallén, A. Torras, and F. Boluda, “Chronic overexposure to cadmium fumes associated with IgA mesangial glomerulonephritis,” Occupational Medicine, vol. 54, no. 4, pp. 265–267, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. G. F. Nordberg, K. Onawa, M. Nordberg, and L. T. Friberg, “Cadmium,” in Handbook of Toxicology of Metals, G. F. Nordberg, B. A. Fowler, M. Nordberg, and L. Friberg, Eds., Elsevier, Amsterdam, The Netherlands, 2007.
  22. Agency for Toxic Substances and Disease Registry (ATSDR), “Toxicological profile for Cadmium,” Atlanta, Ga, USA, Department of Health and Human Services, Public Health Service, 2008.
  23. US EPA, “Draft nanomaterial research strategy,” (NRS) EPA/600/S-08/002, United States Environmental Protection Agency, 2008.
  24. US National Cancer Institute—Nanotechnology Characterization Laboratory, http://ncl.cancer.gov/working_assay-cascade.asp.
  25. D. B. Warheit, P. J. A. Borm, C. Hennes, and J. Lademann, “Testing strategies to establish the safety of nanomaterials: conclusions of an ECETOC workshop,” Inhalation Toxicology, vol. 19, no. 8, pp. 631–643, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. M. A. Maurer-Jones and C. L. Haynes, “Toward correlation in in vivo and in vitro nanotoxicology studies,” The Journal of Law, Medicine & Ethics, vol. 40, no. 4, pp. 795–801, 2013.
  27. S. Creton, I. C. Dewhurst, L. K. Earl et al., “Acute toxicity testing of chemicals—opportunities to avoid redundant testing and use alternative approaches,” Critical Reviews in Toxicology, vol. 40, no. 1, pp. 50–83, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. REACH (Registration Evaluation AuthorizationandRestriction of Chemicals), Regulation (EC) No 1907/2006, 2006, http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=oj:l:2006:396:0001:0849:en:pdf.
  29. T. Coccini, S. Barni, R. Vaccarone, P. Mustarelli, L. Manzo, and E. Roda, “Pulmonary toxicity of instilled cadmium-doped silica nanoparticles during acute and subacute stages in rats,” Histology and Histopathology, vol. 28, no. 2, pp. 195–209, 2013.
  30. T. Coccini, E. Roda, S. Barni, C. Signorini, and L. Manzo, “Long-lasting oxidative pulmonary insult in rat after intratracheal instillation of silica nanoparticles doped with cadmium,” Toxicology, vol. 302, pp. 203–211, 2012.
  31. C. Jumarie, “Cadmium transport through type II alveolar cell monolayers: contribution of transcellular and paracellular pathways in the rat ATII and the human A549 cells,” Biochimica et Biophysica Acta, vol. 1564, no. 2, pp. 487–499, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Y. Kwon, J. H. Jang, W. I. Choi, S. Ramachandran, C. H. Cho, and P. T. Cagle, “Expression of apoptotic nuclei by ultrastructural terminal deoxyribonucleotidyl transferase mediated dUTP nick end labeling and detection of FasL, caspases and PARP protein molecules in cadmium induced acute alveolar cell injury,” Toxicology, vol. 218, no. 2-3, pp. 197–204, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. W.-K. Lee and F. Thévenod, “Novel roles for ceramides, calpains and caspases in kidney proximal tubule cell apoptosis: lessons from in vitro cadmium toxicity studies,” Biochemical Pharmacology, vol. 76, no. 11, pp. 1323–1332, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. F. Thévenod, “Cadmium and cellular signaling cascades: to be or not to be?” Toxicology and Applied Pharmacology, vol. 238, no. 3, pp. 221–239, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Zhang, D. R. Newman, J. C. Bonner, and P. L. Sannes, “Over-expression of human endosulfatase-1 exacerbates cadmium-induced injury to transformed human lung cells in vitro,” Toxicology and Applied Pharmacology, vol. 265, no. 1, pp. 27–42, 2012.
  36. E. Herzog, A. Casey, F. M. Lyng, G. Chambers, H. J. Byrne, and M. Davoren, “A new approach to the toxicity testing of carbon-based nanomaterials-The clonogenic assay,” Toxicology Letters, vol. 174, no. 1–3, pp. 49–60, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. W.-K. Lee, M. Abouhamed, and F. Thévenod, “Caspase-dependent and -independent pathways for cadmium-induced apoptosis in cultured kidney proximal tubule cells,” American Journal of Physiology—Renal Physiology, vol. 291, no. 4, pp. F823–F832, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. L. Järup, M. Berglund, C. G. Elinder, G. Nordberg, and M. Vahter, “Health effects of cadmium exposure—a review of the literature and a risk estimate (Scandinavian Journal of Work, Environment and Health (1998) 24, suppl 1 (52)),” Scandinavian Journal of Work, Environment and Health, vol. 24, no. 3, p. 240, 1998. View at Scopus
  39. S. Thijssen, J. Maringwa, C. Faes, I. Lambrichts, and E. Van Kerkhove, “Chronic exposure of mice to environmentally relevant, low doses of cadmium leads to early renal damage, not predicted by blood or urine cadmium levels,” Toxicology, vol. 229, no. 1-2, pp. 145–156, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Aoyagi, K. Hayakawa, K. Miyaji, H. Ishikawa, and M. Hata, “Cadmium nephrotoxicity and evacuation from the body in a rat modeled subchronic intoxication,” International Journal of Urology, vol. 10, no. 6, pp. 332–338, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Liu, J. Liu, S. M. Habeebu, M. P. Waalkes, and C. D. Klaassen, “Metallothionein-I/II null mice are sensitive to chronic oral cadmium-induced nephrotoxicity,” Toxicological Sciences, vol. 57, no. 1, pp. 167–176, 2000. View at Scopus
  42. B. A. Hart, C. H. Lee, G. S. Shukla et al., “Characterization of cadmium-induced apoptosis in rat lung epithelial cells: evidence for the participation of oxidant stress,” Toxicology, vol. 133, no. 1, pp. 43–58, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. X.-M. Sun, M. MacFarlane, J. Zhuang, B. B. Wolf, D. R. Green, and G. M. Cohen, “Distinct caspase cascades are initiated in receptor-mediated and chemical-induced apoptosis,” The Journal of Biological Chemistry, vol. 274, no. 8, pp. 5053–5060, 1999. View at Publisher · View at Google Scholar · View at Scopus
  44. J. M. Balbus, A. D. Maynard, V. L. Colvin et al., “Meeting report: hazard assessment for nanoparticles-report from an interdisciplinary workshop,” Environmental Health Perspectives, vol. 115, no. 11, pp. 1654–1659, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. E.-J. Park, J. Yi, Y. Kim, K. Choi, and K. Park, “Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism,” Toxicology in Vitro, vol. 24, no. 3, pp. 872–878, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. L. K. Limbach, P. Wick, P. Manser, R. N. Grass, A. Bruinink, and W. J. Stark, “Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress,” Environmental Science and Technology, vol. 41, no. 11, pp. 4158–4163, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. Jin, S. Kannan, M. Wu, and J. X. Zhao, “Toxicity of luminescent silica nanoparticles to living cells,” Chemical Research in Toxicology, vol. 20, no. 8, pp. 1126–1133, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. Shi, S. Yadav, F. Wang, and H. Wang, “Endotoxin promotes adverse effects of amorphous silica nanoparticles on lung epithelial cells in vitro,” Journal of Toxicology and Environmental Health A, vol. 73, no. 11, pp. 748–756, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. M. J. Akhtar, M. Ahamed, S. Kumar et al., “Nanotoxicity of pure silica mediated through oxidant generation rather than glutathione depletion in human lung epithelial cells,” Toxicology, vol. 276, no. 2, pp. 95–102, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. S.-J. Choi, J.-M. Oh, and J.-H. Choy, “Toxicological effects of inorganic nanoparticles on human lung cancer A549 cells,” Journal of Inorganic Biochemistry, vol. 103, no. 3, pp. 463–471, 2009. View at Publisher · View at Google Scholar · View at Scopus