About this Journal Submit a Manuscript Table of Contents
Journal of Thermodynamics
Volume 2010 (2010), Article ID 789262, 39 pages
http://dx.doi.org/10.1155/2010/789262
Review Article

Potential of Porous-Media Combustion Technology as Applied to Internal Combustion Engines

Institute of Vehicle Technology (IFZN), Faculty of Mechanical Engineering, Georg Simon Ohm University of Applied Sciences Nuremberg, Kesselrplatz 12, 90489 Nuremberg, Germany

Received 7 April 2010; Revised 27 October 2010; Accepted 18 November 2010

Academic Editor: L. P. H. De Goey

Copyright © 2010 Miroslaw Weclas. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Mayer, “Definition, measurement and filtration of ultrafine solid particles emitted by Diesel engines,” in Proceedings of the 19th ATW-EMPA Symposium, April 2002.
  2. I. Gege, K. Ohno, S. Hong, and H. Sato, “Diesel particulate filter: filter material, innovation and design,” in Proceedings of the FAD Conference, Dresden, Germany, 2003.
  3. M. Murtagh, et al., “Development of a Diesel particulate filter composition and its effect on thermal durability and filtration performance,” SAE Technical Paper 940235, 1994.
  4. G. A. Merkel, T. Tao, and W. A. Cutler, “New cordierite Diesel particulate filters for catalyzed and non-catalyzed applications,” in Proceedings of the 6th International Congress on Catalysis and Automotive Pollution Control, 2003.
  5. G. A. Merkel, W. A. Cutler, and C. J. Warren, “Thermal durability of wall-flow ceramic Diesel particulate filters,” SAE Technical Paper 2001-01-0190, 2001.
  6. A. Schäfer-Sindlinger, C. D. Vogt, S. Hashimoto, T. Hamanaka, and R. Matsubara, “New Materials for Particulate Filters in Passenger Cars, Auto Technology,” no. 5, 2003.
  7. O. Savat, P. Marez, and G. Belot, “Passenger serial application of a particulate filter system on a common-rail direct-injection Diesel engine,” SAE Technical Paper 2000-01-0473, 2000.
  8. “Particulate traps for heavy duty vehicles,” Environmental Documentation 130, Report of Swiss Agency for the Environment, Forests and Landscape (SAEFL), 2000.
  9. D. Turmel, F. Mao, Ch. Li, A. Prunier, and A. Pyzik, “Development of a new ceramic material for Diesel particulate emission control,” in Proceedings of the Aachener Kolloquium Fahrzeug- und Motorentechnik, pp. 1087–1105, Aachen, Germany, 2004.
  10. “Emission control retrofit of Diesel-fuelled vehicles,” Tech. Rep., Report of Manufacturers of Emission Controls Association, March 2000.
  11. P. Bovonsombat, B.-S. Kang, P. Spurk, H. Klein, and K. Ostgathe, “Development of current and future Diesel after treatment systems,” in Proceedings of the MECA/AECC Meeting, Bangkok, Thailand, February 2001.
  12. A. Mayer, et al., “Passive regeneration of catalyst coated Knitted fiber Diesel particulate traps,” SAE Technical Paper 960138, 1996.
  13. A. Mayer, N. Heeb, J. Czerwinski, and M. Wyser, “Secondary emissions from catalytic active particle filter systems,” Tech. Rep. 2003-01-0291, SAE Technical Paper, 2003.
  14. W. A. Cutler, P. Flörchinger, U. Zink, and D. Tomazic, “Regeneration-control—key to successful application of new DPF systems,” in Proceedings of the Aachener Kolloquium Fahrzeug- und Motorentechnik, 2004.
  15. W. A. Cutler, “Overview of ceramic materials for Diesel particulate applications,” in Proceedings of the 28th International Cocoa Beach Conference on Advanced Ceramics & Composites, 2004.
  16. C. Arcoumanis and J. H. Whitelaw, “Fluid mechanics of internal combustion engines—a review,” Proceedings of the Institution of Mechanical Engineers C, vol. 201, no. 1, pp. 57–74, 1987. View at Scopus
  17. J. B. Heywood, Internal Combustion Engine Fundamentals, McGraw-Hill, New York, NY, USA, 1988.
  18. M. Weclas, A. Melling, and F. Durst, “Unsteady intake valve gap flows,” SAE Technical Paper 952477, 1995.
  19. M. Weclas, “The influence of radial positioning accuracy on LDA velocity measurements in a valve gap,” Measurement Science and Technology, vol. 7, no. 4, pp. 605–614, 1996. View at Scopus
  20. M. Weclas, A. Melling, and F. Durst, “Flow separation in the inlet valve gap of piston engines,” Progress in Energy and Combustion Science, vol. 24, no. 3, pp. 165–195, 1998. View at Scopus
  21. I. Cosadia, J. Borée, G. Charnay, and P. Dumont, “Cyclic variations of the swirling flow in a Diesel transparent engine,” Experiments in Fluids, vol. 41, no. 1, pp. 115–134, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. Ch. Bae, J. Yu, J. Kang, J. Kong, and K. O. Kyeong Ook Lee, “Effect of Nozzle geometry on the Common-Rail Diesel spray,” SAE Technical Paper 2002-01-1625, 2002.
  23. M. S. Beckman and P. V. Farrell, “Simultaneous liquid and vapour Diesel fuel spray images from a HEUI injector,” in Proceedings of the 14th Annual Conference on Liquid Atomization and Spray Systems (ILASS '01), Dearborn, Mich, USA, May 2001.
  24. G. Stiesch, Modeling Engine Spray and Combustion Process, Springer, New York, NY, USA, 2003.
  25. M. R. O. Panão and A. L. N. Moreira, “Experimental study of the flow regimes resulting from the impact of an intermittent gasoline spray,” Experiments in Fluids, vol. 37, no. 6, pp. 834–855, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. M. F. Russell, G. Greeves, and N. Guerrassi, “More Torque, less emissions and less noise,” SAE Technical Paper 2000-01-0942, 2000.
  27. Y. Ishibashi and M. Asai, “A low pressure pneumatic two-stroke engine by activated radical combustion concept,” SAE Technical Paper 980757, 1988.
  28. J. Lavy, J. C. Dabadie, P. Duret, C. Angelberger, J. F. Le Coz, and J. Cherel, “Controlled auto-ignition (CAI): a new highly efficient and near-zero NOx emission combustion process for gasoline engine application,” in A New Generation of Engine Combustion Processes for the Future? P. Duret, Ed., IFP International Congress, pp. 101–114, TECHNIP, Rueil-Malmaison, France, 2001.
  29. Y. Ishibashi, K. Nishida, and M. Asai, “Activated radical combustion in a high-speed high-power pneumatic D.I. Two-stroke engine,” in A New Generation of Engine Combustion Processes for the Future? P. Duret, Ed., IFP International Congress, pp. 141–151, TECHNIP, Rueil-Malmaison, France, 2001.
  30. P. Wolters, W. Salber, and J. Dilthey, “Radical activated combustion. A new approach for gasoline engines,” in A New Generation of Engine Combustion Processes for the Future? P. Duret, Ed., IFP International Congress, pp. 153–162, TECHNIP, Rueil-Malmaison, France, 2001.
  31. H. Zhao, J. Li, T. Ma, and N. Ladommatos, “Performance and analysis of a 4-stroke multi-cylinder gasoline engine with CAI combustion,” SAE Technical Paper 2002-01-0420, 2002.
  32. W. Salber, P. Wolters, M. Duesmann, and J. Dilthey, “Controlled auto ignition combustion process with an electromechanical valve train,” SAE Paper 2003-01-0032, 2003.
  33. A. Fuerhapter, W. F. Piock, and G. K. Fraidl, “CSI-controlled auto ignition-the best solution for the fuel consumption—versus emission trade-off,” SAE World Congress SAE Technical Paper 2003-01-0754, 2003.
  34. J. Kusaka, T. Yamamato, and Y. Daisho, “Simulating the homogeneous charge compression ignition process using a detailed kinetic model for n-heptane mixtures,” International Journal of Engine Research, vol. 1, no. 3, pp. 281–289, 2000.
  35. T. Urushihara, K. Hiraya, A. Kakuhou, and T. Itoh, “Parametric study of gasoline HCCI with various compression ratios, intake pressures and temperatures,” in A New Generation of Engine Combustion Processes for the Future? P. Duret, Ed., IFP International Congress, pp. 77–84, TECHNIP, Rueil-Malmaison, France, 2001.
  36. P. A. Caton, A. J. Simon, J. C. Gerdes, and C. F. Edwards, “Residual-effected homogeneous charge compression ignition at low compression ratio using exhaust reinduction,” International Journal of Engine Research, vol. 4, no. 2, pp. 163–177, 2003.
  37. G. Coma, P. Gastaldi, J. P. Hardy, and D. Maroteaux, “HCCI combustion: dream or reality?” in Proceedings of the 13th Aachen Colloquium on Vehicle and Engine Technology, pp. 513–524, 2004.
  38. Y. Ra and R. D. Reitz, “The role of vaporization and mixture preparation on HCCI engine combustion,” in Proceedings of the Annual Conference on Liquid Atomization and Spray Systems (ILASS '04), Washington, DC, USA, May 2004.
  39. M. Canakci and R. D. Reitz, “Experimental optimization of a DI-HCCI-gasoline engine’s performance and emissions using split injections with fully-automated micro-genetic algorithms,” ASME Journal of Gas Turbines and Power, vol. 126, no. 1, pp. 167–177, 2004.
  40. P. A. Caton, H. H. Song, N. B. Kaahaaina, and C. F. Edwards, “Strategies for achieving residual effected homogeneous charge compression ignition using variable valve actuation,” SAE Technical Paper 2005-01-0165, 2005.
  41. S. Lake, “Internal-Combustion Engine,” US Patent no. 1,276,083, 1918.
  42. H. F. Leissner, “Internal-Combustion Engine,” US Patent no. 1,260,408, 1918.
  43. D. Scherenberg, “Einrichtung zur Kraftstoffaufbereitung bei Fremdgezündeten Brennkraftmaschinen,” German Patent Application no. DE 2306362, 1974.
  44. H. Schladitz and E. Hutzenlaub, “Verfahren und Vorrichtung zum Verdampfung von flüssigen Brennstoffen,” German Patent Application no. DE 2343185, 1975.
  45. L. Schlier, W. Zhang, N. Travitzky, J. Cypris, M. Weclas, and P. Greil, “Macro-cellular silicon carbide reactors for a non-stationary combustion under piston engine-like conditions,” International Journal of Applied Ceramic Technology. In press.
  46. G. Bernecker, “Carburetor,” US Patent no. 4,089,314, 1978.
  47. H. Gladigow and W. Schaetzing, “Fuel atomization device,” US Patent no. 5,609,297, 1997.
  48. M. Weclas, “Verfahren zur Erzeugung eines Flüssigbrennstoff-/Luftgemisches zum Betrieb einer Wärmekraftmaschine,” German Patent Application no. DE 19813891, 1999.
  49. M. Scheffler and P. Colombo, Eds., Cellular Ceramics: Structure, Manufacturing, Propperties and Applications, Wiley-VCH, Cambridge, UK, 2005.
  50. A. P. Roberts and E. J. Garboczi, “Computation of the linear elastic properties of random porous materials with a wide variety of microstructure,” Proceedings of the Royal Society of London, vol. 458, no. 2021, pp. 1033–1054, 2002. View at Publisher · View at Google Scholar
  51. M. Weclas, “High velocity CR Diesel jet impingement on to porous structure and its utilization for mixture homogenization in I.C. engines,” in Proceedings of the DITICE Workshop: Drop/Wall Interaction: Industrial Applications, Experiments and Modeling, Bergamo, Italy, May 2006.
  52. M. Weclas and R. Faltermeier, “Diesel jet impingement on small cylindrical obstacles for mixture homogenization by late injection strategy,” International Journal of Engine Research, vol. 8, no. 5, pp. 399–413, 2007. View at Publisher · View at Google Scholar
  53. M. Weclas, “Some fundamental observations on the Diesel jet destruction and spatial distribution in highly porous structures,” Journal of Porous Media, vol. 11, no. 2, pp. 125–144, 2008. View at Publisher · View at Google Scholar
  54. M. Weclas, “Porous media in internal combustion engines,” in Cellular Ceramics-Structure, Manufacturing, Properties and Applications, M. Scheffler and P. Colombo, Eds., Wiley-VCH, Cambridge, UK, 2005.
  55. W. Müller, “Kolben-Brennkraftmaschine,” German Patent Application no. DE 2416804, 1975.
  56. W. C. Pfefferle, “Apparatus and method,” US Patent no. 3,923,011, 1975.
  57. R. A. Haslett, “I.C. engine,” US Patent no. 4,092,967, 1978.
  58. R. M. Siewert, “Catalytic late direct injection spark ignition engine,” US Patent no. 4,480,613, 1984.
  59. J. C. Firey, “Porous burner Diesel engine,” US Patent no. 4,381,745, 1983.
  60. F. Durst and M. Weclas, “Verfahren und Vorrichtung zur Umwandlung von Wärme in Arbeit,” German Patent no. 19753407, 1997.
  61. F. Durst and M. Weclas, “Method and device for converting heat into work,” US Patent no. 6,125,815, 2000.
  62. E. Pott, “Verbrennungsmotor,” German Patent Application no. DE 19857071, 2000.
  63. L. J. Gibson and M. F. Ashby, Cellular Solids, Structure & Properties, Cambridge University Press, Cambridge, UK, 1999.
  64. K. Vafai and M. Sozen, “Analysis of energy and momentum transport for fluid flow through a porous bed,” Journal of Heat Transfer, vol. 112, no. 3, pp. 690–699, 1990.
  65. G. Brenner, K. Pickenäcker, O. Pickenäcker, D. Trimis, K. Wawrzinek, and T. Weber, “Numerical and experimental investigation of matrix-stabilized methane/air combustion in porous inert media,” Combustion and Flame, vol. 123, no. 1-2, pp. 201–213, 2000. View at Publisher · View at Google Scholar
  66. F. Durst and M. Weclas, “A new type of internal combustion engine based on the porous-medium combustion technique,” Journal of Automobile Engineering, vol. 215, no. 1, pp. 63–81, 2001. View at Publisher · View at Google Scholar
  67. F. Durst and M. Weclas, “A new concept of IC engine with homogeneous combustion in porous medium (PM),” in Proceedings of the 5th International Symposium on Diagnostics and Modelling of Combustion in Internal Combustion Engines (COMODIA '01), Nagoya, Japan, July 2001.
  68. J. J. Hwang, G. J. Hwang, R. H. Yeh, and C. H. Chao, “Measurement of interstitial convective heat transfer and frictional drag for flow across metal foams,” Journal of Heat Transfer, vol. 124, no. 1, pp. 120–129, 2002. View at Publisher · View at Google Scholar
  69. Y. Ge, L. Chen, F. Sun, and C. Wu, “Thermodynamic simulation of performance of an Otto cycle with heat transfer and variable specific heats of working fluid,” International Journal of Thermal Sciences, vol. 44, no. 5, pp. 506–511, 2005. View at Publisher · View at Google Scholar
  70. P. Cheng and H. Zhu, “Effects of radial thermal dispersion on fully-developed forced convection in cylindrical packed tubes,” International Journal of Heat and Mass Transfer, vol. 30, no. 11, pp. 2373–2383, 1987.
  71. A. B. Duncan, G. P. Peterson, and L. S. Fletcher, “Effective thermal conductivity within packed beds of spherical particles,” Journal of Heat Transfer, vol. 111, pp. 831–836, 1989.
  72. S. B. Sathe, R. E. Peck, and T. W. Tong, “Flame stabilization and multimode heat transfer in porous radiant burners: a numerical study,” Combustion Science and Technology, vol. 70, pp. 93–109, 1990.
  73. R. Echigo, “Radiation enhanced/controlled phenomena of heat and mass transfer in porous media,” in Proceedings of the 3rd ASME/JSME Thermal Engineering Joint Conference, vol. 4, pp. 21–32, March 1991.
  74. R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, Hemisphere, Washington, DC, USA, 3rd edition, 1992.
  75. L. B. Younis and R. Viskanta, “Experimental determination of the volumetric heat transfer coefficient between stream of air and ceramic foam,” International Journal of Heat and Mass Transfer, vol. 36, no. 6, pp. 1425–1434, 1993.
  76. A. A. Mohamad, S. Ramadhyani, and R. Viskanta, “Modelling of combustion and heat transfer in a packed bed with embedded coolant tubes,” International Journal of Heat and Mass Transfer, vol. 37, no. 8, pp. 1181–1191, 1994.
  77. A. Amiri and K. Vafai, “Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media,” International Journal of Heat and Mass Transfer, vol. 37, no. 6, pp. 939–954, 1994.
  78. G. J. Hwang and C. H. Chao, “Heat transfer measurement and analysis for sintered porous channels,” Journal of Heat Transfer, vol. 116, no. 2, pp. 456–464, 1994.
  79. M. Varahasamy and R. M. Fand, “Heat transfer by forced convection in pipes packed with porous media whose matrices are composed of spheres,” International Journal of Heat and Mass Transfer, vol. 39, no. 18, pp. 3931–3947, 1996. View at Publisher · View at Google Scholar
  80. R. A. Wirtz, “A semi-empirical model for porous media heat exchanger design,” in Proceedings of the American Society of Mechanical Engineers National Heat Transfer Conference, vol. 349, pp. 155–162, Baltimore, Md, USA, August 1997.
  81. M. Kaviany, Principles of Heat Transfer in Porous Media, Springer, New York, NY, USA, 2nd edition, 1999.
  82. V. V. Calmidi and R. L. Mahajan, “Forced convection in high porosity metal foams,” Journal of Heat Transfer, vol. 122, no. 3, pp. 557–565, 2000. View at Publisher · View at Google Scholar
  83. A. A. M. Oliveira and M. Kaviany, “Nonequilibrium in the transport of heat and reactants in combustion in porous media,” Progress in Energy and Combustion Science, vol. 27, no. 5, pp. 523–545, 2001. View at Publisher · View at Google Scholar
  84. J. J. Hwang, G. J. Hwang, R. H. Yeh, and C. H. Chao, “Measurement of interstitial convective heat transfer and frictional drag for flow across metal foams,” Journal of Heat Transfer, vol. 124, no. 1, pp. 120–129, 2002. View at Publisher · View at Google Scholar
  85. F. A. L. Dullien, Porous Media: Fluid Transport and Pore Structure, Academic Press, New York, NY, USA, 1979.
  86. D. P. Jones and H. Krier, “Gas flow resistance measurements through packed beds at high Reynolds number,” Journal of Fluids Engineering, vol. 105, no. 2, pp. 168–173, 1983.
  87. C. Satik, M. Parlar, and Y. C. Yortsos, “A study of steady-state steam-water counterflow in porous media,” International Journal of Heat and Mass Transfer, vol. 34, no. 7, pp. 1755–1771, 1991.
  88. P. M. Adler, Porous Media, Geometry and Transports, Butterworth-Heinemann, Boston, Mass, USA, 1992.
  89. M. J. Hall and J. P. Hiatt, “Exit flows from highly porous media,” Physics of Fluids, vol. 6, no. 2, pp. 469–479, 1994.
  90. B. V. Antohe, J. L. Lage, D. C. Price, and R. M. Weber, “Experimental determination of permeability and inertia coefficients of mechanically compressed aluminum porous matrices,” Journal of Fluids Engineering, vol. 119, no. 2, pp. 404–412, 1997.
  91. V. Starikovicius, “The multiphase flow and heat transfer in porous media,” Report Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM 55, 2003.
  92. M. D. Innocentini, P. Sepulveda, and F. Santos Ortega, “Permeability,” in Cellular Ceramics: Structure, Manufacturing, Properties and Applications, M. Scheffler and P. Colombo, Eds., Wiley-VCH, Cambridge, UK, 2005.
  93. A. A. Korzhavin, V. A. Bunev, R. KH. Abdullin, and V. S. Babkin, “Flame zone in gas combustion in an inert porous medium,” Combustion, Explosion, and Shock Waves, vol. 18, no. 6, pp. 628–631, 1982. View at Publisher · View at Google Scholar
  94. G. A. Lyamin and A. V. Pinaev, “Combustion regimes for gases in an inert porous material,” Combustion, Explosion, and Shock Waves, vol. 22, no. 5, pp. 553–558, 1987, Translated from: Fizika Goreniya i Vzryva, vol. 22, no. 5, pp. 64–70, 1986.
  95. P. F. Hsu, J. R. Howell, and R. D. Matthews, “Numerical investigation of premixed combustion within porous inert media,” in Proceedings of the 3rd ASME/JSME Thermal Engineering Joint Conference, vol. 4, pp. 225–231, Reno, Nev, USA, March 1991.
  96. D. Trimis and F. Durst, “Combustion in a porous medium-advances and applications,” Combustion Science and Technology, vol. 121, no. 1–6, pp. 153–168, 1996.
  97. V. S. Babkin, A. A. Korzhavin, and V. A. Bunev, “Propagation of premixed gaseous explosion flames in porous media,” Combustion and Flame, vol. 87, no. 2, pp. 182–190, 1991. View at Publisher · View at Google Scholar
  98. D. Trimis, “Stabilized combustion in porous media—applications of the porous burner technology in energy- and heat-engineering,” in Proceedings of the FLUIDS Conference and Exhibit, Denver, Colo, USA, 2000, AIAA-2000-2298.
  99. M. Weclas and J. Cypris, “Distribution-nozzle” concept: a method for Diesel spray distribution in space for charge homogenization by late injection strategy,” in Proceedings of the 23rd Annual Conference on Liquid Atomization and Spray Systems (ILASS '10), Brno, Czech Republic, September 2010, Paper no. ID ILASS10-40.
  100. T. Fend, D. Trimis, R. Pitz-Paal, B. Hoffschmidt, and O. Reutter, “Thermal properties,” in Cellular Ceramics: Structure, Manufacturing, Properties and Applications, M. Scheffler and P. Colombo, Eds., Wiley-VCH, Cambridge, UK, 2005.
  101. S. T. Gulati and A. Schneider, “Mechanical strength of cellular ceramic substrates,” in Proceedings of the Ceramics for Environmental Protection, Cologne, Germany, December 1988.
  102. R. W. Rice, Porosity of Ceramics and Its Effects on Properties, Marcel Dekker, New York, NY, USA, 1998.
  103. R. W. Rice, “Mechanical properties,” in Cellular Ceramics: Structure, Manufacturing, Properties and Applications, M. Scheffler and P. Colombo, Eds., Wiley-VCH, Cambridge, UK, 2005.
  104. H.-P. Martin and J. Adler, “Design of electrical and thermal properties for liquid phase sintered silicon carbide,” in Proceedings of the Symposium K5 Multifunctional Ceramics, Materials Week, Munich, Germany, 2001.
  105. H.-P. Martin and J. Adler, “Electrical properties,” in Cellular Ceramics: Structure, Manufacturing, Properties and Applications, M. Scheffler and P. Colombo, Eds., Wiley-VCH, Cambridge, UK, 2005.
  106. M. Weclas, “Verfahren zum Verbrennen von Brennstoff und Brennraum,” German Patent Application no. DE 10135062, 2003.
  107. A. Basara and M. Weclas, “Structural analysis of burner combustion systems,” in Proceedings of the Workshop on the Effective Methods of Energy Conversion and Relevant Measurement Techniques, Sarajevo, Bosnia, November 2002.
  108. A. Pereira and A. A. Oliveira, “Analysis and experiment of the combustion with excess enthalpy in porous media,” in Proceedings of the European Combustion Meeting, 2003.
  109. S. B. Sathe, M. R. Kulkarni, R. E. Peck, and T. W. Tong, “An experimental and theoretical study of porous radiant burner performance,” in Proceedings of the 23rd International Symposium on Combustion, pp. 1011–1018, The Combustion Institute, 1990.
  110. P.-F. Hsu, J. R. Howell, and R. D. Matthews, “Numerical investigation of premixed combustion within porous inert media,” ASME Journal of Heat Transfer, vol. 115, pp. 744–750, 1993.
  111. F. Durst, M. Keppler, and M. Weclas, “Air-assisted nozzle applied to very compact, ultra-low emission porous medium oil-burner,” in Proceedings of the 3rd Workshop on SPRAY, Lampoldshausen, Germany, 1997.
  112. V. V. Martynenko, R. Echigo, and H. Yoshida, “Mathematical model of self-sustaining combustion in inert porous medium with phase change under complex heat transfer,” International Journal of Heat and Mass Transfer, vol. 41, no. 1, pp. 117–126, 1998.
  113. S. Mößbauer, O. Pickenäcker, K. Pickenäcker, and D. Trimis, “Application of the porous burner technology in energy- and heat-engineering,” in Proceedings of the 5th International Conference on Technologies and Combustion for a Clean Environment (Clean Air V), vol. 1, pp. 519–523, Lissabon, Portugal, July 1999, Paper 20.2 "Application of Porous Media to Combustion Processes I".
  114. I. Malico and J. C. F. Pereira, “Numerical predictions of porous burners with integrated heat exchanger for household applications,” Journal of Porous Media, vol. 2, no. 2, pp. 153–162, 1999.
  115. O. Pickenäcker, A. Kesting, and D. Trimis, “Novel low NOx burner design for boilers and furnaces by using staged combustion in inert porous media,” in Proceedings of the 5th European Conference on Industrial Furnaces and Boilers (INFUB '00), Espinho-Porto, Portugal, April 2000.
  116. O. Pickenäcker and D. Trimis, “Experimental study of a staged methane/air burner based on combustion in a porous inert medium,” Journal of Porous Media, vol. 4, no. 3, pp. 197–213, 2001.
  117. M. Kaviany, “In cylinder-thermal regeneration: porous-foam engine regenerator,” in Principles of Heat Transfer in Porous Media, Springer, New York, NY, USA, 1999.
  118. M. Weclas, Non-Stationary High Velocity Jet Impingement on Small Cylindrical Obstacles, Sonderdruck Schriftenreihe University of Applied Sciences in Nuernberg, 2008.
  119. H. L. MacLean and L. B. Lave, “Evaluating automobile fuel/propulsion system technologies,” Progress in Energy and Combustion Science, vol. 29, no. 1, pp. 1–69, 2003. View at Publisher · View at Google Scholar
  120. F. Zhao, M. C. Lai, and D. L. Harrington, “Automotive spark-ignited direct-injection gasoline engines,” Progress in Energy and Combustion Science, vol. 25, no. 5, pp. 437–562, 1999. View at Publisher · View at Google Scholar
  121. R. Lindgren and I. Denbratt, “Modelling gasoline spray—wall interaction—a review of current models,” SAE Technical Paper 2000-01-2808, 2000.
  122. S. S. Sazhin, “Advanced models of fuel droplet heating and evaporation,” Progress in Energy and Combustion Science, vol. 32, no. 2, pp. 162–214, 2006. View at Publisher · View at Google Scholar
  123. F.-Q. Zhao and M.-C. Lai, “The spray characteristics of automotive port fuel injection-a critical review,” SAE Technical Paper 950506, 1995.
  124. M. R. O. Panão and A. L. N. Moreira, “Flow characteristics of spray impingement in PFI injection systems,” Experiments in Fluids, vol. 39, no. 2, pp. 364–374, 2005. View at Publisher · View at Google Scholar
  125. M. Weclas, “Vorrichtung und Verfahren zur Homogenisierung des Gemisches bei der Verteilung von Flüssigkeiten insbesondere bei der Kraftstoffeinspritzung,” German Patent Application no. DE 4,480,613, 2006.
  126. M. Weclas, “Homogenization of liquid distribution in space by Diesel jet interaction with porous structures and small obstacles,” in Proceedings of the 22nd European Conference on Liquid Atomization and Spray Systems, Como, Italy, September 2008.
  127. F. Durst and M. Weclas, “Porous Medium (PM) combustion technology and its application to internal combustion engines: a new concept for a near-zero emission engine,” in Applied Optical Measurements, M. Lehner and D. Mewes, Eds., Springer, New York, NY, USA, 1999.
  128. M. Weclas, “Potential of porous medium combustion technology as applied to internal combustion engines,” Sonderdruck Schriftenreihe Fachhochschule Nürnberg, no. 32, 2005.
  129. M. Weclas, “New strategies for homogeneous combustion in I.C. engines based on the porous medium (PM)-technology,” ILASS Europe, June 2001.
  130. M. Weclas, Strategy for Intelligent Internal Combustion Engine with Homogeneous Combustion in Cylinder, Sonderdruck Schriftenreihe University of Applied Sciences in Nuernberg, 2004.
  131. C. Chevalier, W. J. Pitz, J. Warnatz, C. K. Westbrook, and H. Melenk, “Hydrocarbon ignition: automatic generation of reaction mechanisms and applications to modelling of engine knock,” Proceedings of the Combustion Institute, vol. 24, pp. 93–101, 1992.
  132. K. Lucka and H. Köhne, “Usage of cold flames for the evaporation of liquid fuels,” in Proceedings of the 5th Conference on Technologies and Combustion for a Clean Enviroment, pp. 207–213, Lisbon, Portugal, July 1999.
  133. D. Grebner, J. Hein, W. Triebel, A. Burkert, J. König, and C. Eigenbrod, “2D-fast-scan cool-flame diagnostic using formaldehyde-LIF excited by XeF excimer laser radiation,” in Proceedings of the Joint Meeting of Combustion Institute, pp. 485–487, Nancy, France, May 1999.
  134. A. Naidja, C. R. Krishna, T. Butcher, and D. Mahajan, “Cool flame partial oxidation and its role in combustion and reforming of fuels for fuel cell systems,” Progress in Energy and Combustion Science, vol. 29, no. 2, pp. 155–191, 2003. View at Publisher · View at Google Scholar
  135. N. Peters, G. Paczko, R. Seiser, and K. Seshadri, “Temperature crossover and non-thermal runaway at two-stage ignition of n-heptane,” Combust Flame, vol. 128, pp. 38–59, 2003.
  136. D. M. Wang and A. P. Watkins, “Numerical modeling of Diesel spray wall impaction phenomena,” International Journal of Heat and Fluid Flow, vol. 14, no. 3, pp. 301–312, 1993.
  137. J. Senda, M. Kobayashi, S. Iwashita, and H. Fujimoto, “Modeling of Diesel spray impingement on a flat plate,” SAE Technical Paper 941894, 1994.
  138. J. Senda, H. Fujimoto, M. Kobayashi, K. Yamamoto, and Y. Enomoto, “Heat transfer characteristics of a Diesel spray impinging on a wall,” Journal of the Marine Engineering Society in Japan, vol. 29, no. 10, 1995.
  139. C. Bai and A. D. Gosman, “Development of methodology for spray impingement simulation,” SAE Technical Paper 950283, 1995.
  140. C. Mundo, M. Sommerfeld, and C. Tropea, “Droplet-wall collisions: experimental studies of the deformation and breakup process,” International Journal of Multiphase Flow, vol. 21, no. 2, pp. 151–173, 1995.
  141. S. Lee and H. Ryou, “Modeling of spray-wall interactions considering liquid film formation,” in Proceedings of the 8th International Conference on Liquid Atomization and Spray Systems, pp. 586–593, Pasadena, Calif, USA, 2000.
  142. O. R. Grover Jr. and D. N. Assanis, “A spray wall impingement model based upon conservation principles,” in Proceedings of the 5th International Symposium on Diagnostics and Modelling of Combustion in Internal Combustion Engines (COMODIA '01), Nagoya, Japan, July 2001.
  143. E. Berg, “DIME validation of spray-wall interaction models,” in Proceedings of the DIME Workshop, Valencia, Spain, 2003.
  144. C. Arcoumanis, M. Gavaises, and B. French, “Effect of fuel injection process on the structure of Diesel sprays,” SAE Technical Paper 970799, 1997.
  145. C. W. Park and M. Kaviany, “Evaporation-combustion affected by in-cylinder, reciprocating porous regenerator,” Journal of Heat Transfer, vol. 124, no. 1, pp. 184–194, 2002. View at Publisher · View at Google Scholar
  146. K. Hanamura, K. Bohda, Y. Miyairi, and R. Echigo, “Heat engine with reciprocating super-adiabatic combustion in porous media,” in Proceedings of the International Congress & Exposition, Detroit, Mich, USA, February 1997, SAE Techhnical Paper no. 970201.
  147. K. Hanamura and S. Nishio, “A feasibility study of reciprocating-flow super-adiabatic combustion engine,” in Proceedings of the 6th ASME-JSME Thermal Engineering Joint Conference, 2003, Paper no. TED-AJ03-547.
  148. A. J. Ferrenberg, “Low heat rejection regenerated engines—a superior alternative to turbocompounding,” SAE Technical Paper 940946, 1994.
  149. A. Ferrenberg and B. E. Williams, “Progress in the development of the regenerated Diesel engine,” SAE Technical Paper 961677, 1996.
  150. A. J. Ferrenberg, “Regenerative internal combustion engine,” US Patent no. 4,790,284, 1988.
  151. A. J. Ferrenberg, “The single cylinder regenerated internal combustion engine,” SAE Technical Paper 900911, 1990.
  152. F. Ruiz, “Analysis of the 3rd generation IC-stirling engine,” SAE Technical Paper 2005-01-3462, 2005.
  153. F. Ruiz, “A first look into the regenerative engine,” SAE Technical Paper 890473, 1989.
  154. F. Ruiz, “Regenerative internal combustion engine. Part I. Theory,” Journal of Propulsion and Power, vol. 6, no. 2, pp. 203–208, 1990.
  155. F. Ruiz, “Regenerative internal combustion engine. Part II. Practical configurations,” Journal of Propulsion and Power, vol. 6, no. 2, pp. 209–213, 1990.
  156. S. Thyageswaran and F. Ruiz, “Time-dependent analysis of the regenerative engine cycle,” SAE Technical Paper 900912, 1990.
  157. F. Durst, M. Weclas, and S. Mößbauer, “A new concept of porous medium combustion in I.C. engines,” in Proceedings of the International Symposium on Recent Trends in Heat and Mass Transfer, Guwahati, India, 2002.
  158. M. Weclas, J. Cypris, and T. M. A. Maksoud, “Combustion of Diesel sprays under real-engine like conditions: analysis of low- and high-temperature processes,” in Proceedings of the 23rd Annual Conference on Liquid Atomization and Spray Systems (ILASS '10), Brno, Czech Republic, September 2010, Paper no. ID ILASS10-39.