About this Journal Submit a Manuscript Table of Contents
Journal of Thyroid Research
Volume 2012 (2012), Article ID 618985, 12 pages
http://dx.doi.org/10.1155/2012/618985
Review Article

Differentiated Thyroid Cancer: Management of Patients with Radioiodine Nonresponsive Disease

Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1461, Houston, TX 77030, USA

Received 1 August 2011; Revised 21 November 2011; Accepted 21 November 2011

Academic Editor: Mingzhao M. Xing

Copyright © 2012 Naifa Lamki Busaidy and Maria E. Cabanillas. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, and M. J. Thun, “Cancer statistics, 2009,” CA Cancer Journal for Clinicians, vol. 59, no. 4, pp. 225–249, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. J. Robbins, M. J. Merino, J. D. Boice et al., “Thyroid cancer: a lethal endocrine neoplasm,” Annals of Internal Medicine, vol. 115, no. 2, pp. 133–147, 1991. View at Scopus
  3. F. D. Gilliland, W. C. Hunt, D. M. Morris, and C. R. Key, “Prognostic factors for thyroid carcinoma: a population-based study of 15,698 cases from the Surveillance, Epidemiology and End Results (SEER) program 1973–1991,” Cancer, vol. 79, no. 3, pp. 564–573, 1997. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Antonelli, P. Fallahi, S. M. Ferrari et al., “Dedifferentiated thyroid cancer: a therapeutic challenge,” Biomedicine and Pharmacotherapy, vol. 62, no. 8, pp. 559–563, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. D. S. Cooper, G. M. Doherty, B. R. Haugen et al., “Revised American thyroid association management guidelines for patients with thyroid nodules and differentiated thyroid cancer,” Thyroid, vol. 19, no. 11, pp. 1167–1214, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. A. Antonelli, P. Miccoli, M. Ferdeghini et al., “Role of neck ultrasonography in the follow-up of patients operated on for thyroid cancer,” Thyroid, vol. 5, no. 1, pp. 25–28, 1995. View at Scopus
  7. M. Franceschi, Z. Kusić, D. Franceschi, L. Lukinac, and S. Rončević, “Thyroglobulin determination, neck ultrasonography and iodine-131 whole-body scintigraphy in differentiated thyroid carcinoma,” Journal of Nuclear Medicine, vol. 37, no. 3, pp. 446–451, 1996. View at Scopus
  8. A. Frilling, R. Gorges, K. Tecklenborg et al., “Value of preoperative diagnostic modalities in patients with recurrent thyroid carcinoma,” Surgery, vol. 128, no. 6, pp. 1067–1074, 2000. View at Scopus
  9. T. Uruno, A. Miyauchi, K. Shimizu et al., “Usefulness of thyroglobulin measurement in fine-needle aspiration biopsy specimens for diagnosing cervical lymph node metastasis in patients with papillary thyroid cancer,” World Journal of Surgery, vol. 29, no. 4, pp. 483–485, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. A. Frasoldati, E. Toschi, M. Zini et al., “Role of thyroglobulin measurement in fine-needle aspiration biopsies of cervical lymph nodes in patients with differentiated thyroid cancer,” Thyroid, vol. 9, no. 2, pp. 105–111, 1999. View at Scopus
  11. F. Pacini, L. Fugazzola, F. Lippi et al., “Detection of thyroglobulin in fine needle aspirates of nonthyroidal neck masses: a clue to the diagnosis of metastatic differentiated thyroid cancer,” The Journal of Clinical Endocrinology and Metabolism, vol. 74, no. 6, pp. 1401–1404, 1992. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Hooft, O. S. Hoekstra, W. Devillé et al., “Diagnostic accuracy of 18F-fluorodeoxyglucose positron emission tomography in the follow-up of papillary or follicular thyroid cancer,” The Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 8, pp. 3779–3786, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Khan, N. Oriuchi, T. Higuchi, H. Zhang, and K. Endo, “PET in the follow-up of differentiated thyroid cancer,” British Journal of Radiology, vol. 76, no. 910, pp. 690–695, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. R. J. Robbins, Q. Wan, R. K. Grewal et al., “Real-time prognosis for metastatic thyroid carcinoma based on 2-[ 18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning,” The Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 2, pp. 498–505, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. D. Deandreis, A. Al Ghuzlan, S. Leboulleux et al., “Do histological, immunohistochemical, and metabolic (radioiodine and fluorodeoxyglucose uptakes) patterns of metastatic thyroid cancer correlate with patient outcome?” Endocrine-Related Cancer, vol. 18, no. 1, pp. 159–169, 2011. View at Publisher · View at Google Scholar · View at PubMed
  16. J. K. Chung, Y. So, J. S. Lee et al., “Value of FDG PET in papillary thyroid carcinoma with negative 131I whole-body scan,” Journal of Nuclear Medicine, vol. 40, no. 6, pp. 986–992, 1999. View at Scopus
  17. N. S. Alnafisi, A. A. Driedger, G. Coates, D. J. Moote, and S. J. Raphael, “FDG PET of recurrent or metastatic 131I-negative papillary thyroid carcinoma,” Journal of Nuclear Medicine, vol. 41, no. 6, pp. 1010–1015, 2000. View at Scopus
  18. W. Wang, S. M. Larson, M. Fazzari et al., “Prognostic value of [18F]fluorodeoxyglucose positron emission tomographic scanning in patients with thyroid cancer,” The Journal of Clinical Endocrinology and Metabolism, vol. 85, no. 3, pp. 1107–1113, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. W. Wang, S. M. Larson, R. M. Tuttle et al., “Resistance of [18F]-fluorodeoxyglucose—avid metastatic thyroid cancer lesions to treatment with high-dose radioactive iodine,” Thyroid, vol. 11, no. 12, pp. 1169–1175, 2001. View at Scopus
  20. U. Feine, R. Lietzenmayer, J. P. Hanke, J. Held, H. Wöhrle, and W. Müller-Schauenburg, “Fluorine-18-FDG and iodine-131-iodide uptake in thyroid cancer,” Journal of Nuclear Medicine, vol. 37, no. 9, pp. 1468–1472, 1996. View at Scopus
  21. W. Wang, H. Macapinlac, S. M. Larson et al., “[18F]-2-fluoro-2-deoxy-D-glucose positron emission tomography localizes residual thyroid cancer in patients with negative diagnostic131I whole body scans and elevated serum thyroglobulin levels,” The Journal of Clinical Endocrinology and Metabolism, vol. 84, no. 7, pp. 2291–2302, 1999. View at Scopus
  22. A. D. Van Bruel, A. Maes, T. De Potter et al., “Clinical relevance of thyroid fluorodeoxyglucose-whole body positron emission tomography incidentaloma,” The Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 4, pp. 1517–1520, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Shammas, B. Degirmenci, J. M. Mountz et al., “18F-FDG PET/CT in patients with suspected recurrent or metastatic well-differentiated thyroid cancer,” Journal of Nuclear Medicine, vol. 48, no. 2, pp. 221–226, 2007. View at Scopus
  24. T. Petrich, A. R. Börner, D. Otto, M. Hofmann, and W. H. Knapp, “Influence of rhTSH on [18F]fluorodeoxyglucose uptake by differentiated thyroid carcinoma,” European Journal of Nuclear Medicine, vol. 29, no. 5, pp. 641–647, 2002. View at Publisher · View at Google Scholar · View at PubMed
  25. F. Moog, R. Linke, N. Manthey et al., “Influence of thyroid-stimulating hormone levels on uptake of FDG in recurrent and metastatic differentiated thyroid carcinoma,” Journal of Nuclear Medicine, vol. 41, no. 12, pp. 1989–1995, 2000. View at Scopus
  26. B. B. Chin, P. Patel, C. Cohade, M. Ewertz, R. Wahl, and P. Ladenson, “Recombinant human thyrotropin stimulation of fluoro-D-glucose positron emission tomography uptake in well-differentiated thyroid carcinoma,” The Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 1, pp. 91–95, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Leboulleux, P. R. Schroeder, N. L. Busaidy et al., “Assessment of the incremental value of recombinant thyrotropin stimulation before 2-[18F]-fluoro-2—deoxy-D-glucose positron emission tomography/computed tomography imaging to localize residual differentiated thyroid cancer,” The Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 4, pp. 1310–1316, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. B. Schluter, K. H. Bohuslavizki, W. Beyer, M. Plotkin, R. Buchert, and M. Clausen, “Impact of FDG PET on patients with differentiated thyroid cancer who present with elevated thyroglobulin and negative 131I scan,” Journal of Nuclear Medicine, vol. 42, pp. 71–76, 2011.
  29. B. O. Helal, P. Merlet, M. E. Toubert et al., “Clinical impact of 18F-FDG PET in thyroid carcinoma patients with elevated thyroglobulin levels and negative 131I scanning results after therapy,” Journal of Nuclear Medicine, vol. 42, no. 10, pp. 1464–1469, 2001. View at Scopus
  30. L. A. Zimmer, B. McCook, C. Meltzer et al., “Combined positron emission tomography/computed tomography imaging of recurrent thyroid cancer,” Otolaryngology—Head and Neck Surgery, vol. 128, no. 2, pp. 178–184, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. W. J. Simpson, T. Panzarella, J. S. Carruthers, M. K. Gospodarowicz, and S. B. Sutcliffe, “Papillary and follicular thyroid cancer: impact of treatment in 1578 patients,” International Journal of Radiation Oncology Biology Physics, vol. 14, no. 6, pp. 1063–1075, 1988. View at Scopus
  32. N. A. Samaan, P. N. Schultz, T. P. Haynie, and N. G. Ordonez, “Pulmonary metastasis of differentiated thyroid carcinoma: treatment results in 101 patients,” The Journal of Clinical Endocrinology and Metabolism, vol. 60, no. 2, pp. 376–380, 1985. View at Scopus
  33. J. J. Ruegemer, I. D. Hay, E. J. Bergstralh, J. J. Ryan, K. P. Offord, and C. A. Gorman, “Distant metastases in differentiated thyroid carcinoma: a multivariate analysis of prognostic variables,” The Journal of Clinical Endocrinology and Metabolism, vol. 67, no. 3, pp. 501–508, 1988. View at Scopus
  34. M. Schlumberger, C. Challeton, F. de Vathaire et al., “Radioactive iodine treatment and external radiotherapy for lung and bone metastases from thyroid carcinoma,” Journal of Nuclear Medicine, vol. 37, no. 4–6, pp. 598–605, 1996. View at Scopus
  35. E. L. Mazzaferri and R. T. Kloos, “Current approaches to primary therapy for papillary and follicular thyroid cancer,” The Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 4, pp. 1447–1463, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. R. T. Kloos and E. L. Mazzaferri, “A single recombinant human thyrotropin-stimulated serum thyroglobulin measurement predicts differentiated thyroid carcinoma metastases three to five years later,” The Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 9, pp. 5047–5057, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. A. M. Sawka, L. Thabane, L. Parlea et al., “Second primary malignancy risk after radioactive iodine treatment for thyroid cancer: a systematic review and meta-analysis,” Thyroid, vol. 19, no. 5, pp. 451–457, 2009. View at Scopus
  38. T. R. Shepler, S. I. Sherman, M. M. Faustina, N. L. Busaidy, M. A. Ahmadi, and B. Esmaeli, “Nasolacrimal duct obstruction associated with radioactive iodine therapy for thyroid carcinoma,” Ophthalmic Plastic and Reconstructive Surgery, vol. 19, no. 6, pp. 479–481, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. R. T. Kloos, V. Duvuuri, S. M. Jhiang, K. V. Cahill, J. A. Foster, and J. A. Burns, “Comment: nasolacrimal drainage system obstruction from radioactive iodine therapy for thyroid carcinoma,” The Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 12, pp. 5817–5820, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. R. Vassilopoulou-Sellin, L. Palmer, S. Taylor, and C. S. Cooksley, “Incidence of breast carcinoma in women with thyroid carcinoma,” Cancer, vol. 85, no. 3, pp. 696–705, 1999. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Y. Chen, L. Levy, H. Goepfert, B. W. Brown, M. R. Spitz, and R. Vassilopoulou-Sellin, “The development of breast carcinoma in women with thyroid carcinoma,” Cancer, vol. 92, no. 2, pp. 225–231, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. F. de Vathaire, M. Schlumberger, M. J. Delisle et al., “Leukaemias and cancers following iodine-131 administration for thyroid cancer,” British Journal of Cancer, vol. 75, no. 5, pp. 734–739, 1997. View at Scopus
  43. B. D. Lewis, I. D. Hay, J. W. Charboneau, B. McIver, C. C. Reading, and J. R. Goellner, “Percutaneous ethanol injection for treatment of cervical lymph node metastases in patients with papillary thyroid carcinoma,” American Journal of Roentgenology, vol. 178, no. 3, pp. 699–704, 2002. View at Scopus
  44. S. Uchino, S. Noguchi, H. Yamashita, and S. Watanabe, “Modified radical neck dissection for differentiated thyroid cancer: operative technique,” World Journal of Surgery, vol. 28, no. 12, pp. 1199–1203, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. N. Avenia, M. Ragusa, M. Monacelli et al., “Locally advanced thyroid cancer: therapeutic options,” Chirurgia Italiana, vol. 56, no. 4, pp. 501–508, 2004. View at Scopus
  46. J. C. McCaffrey, “Evaluation and treatment of aerodigestive tract invasion by well- differentiated thyroid carcinoma,” Cancer Control, vol. 7, no. 3, pp. 246–252, 2000. View at Scopus
  47. J. M. Czaja and T. V. McCaffrey, “The surgical management of laryngotracheal invasion by well- differentiated papillary thyroid carcinoma,” Archives of Otolaryngology—Head and Neck Surgery, vol. 123, no. 5, pp. 484–490, 1997. View at Scopus
  48. T. J. Musholt, P. B. Musholt, M. Behrend, R. Raab, G. F. W. Scheumann, and J. Klempnauer, “Invasive differentiated thyroid carcinoma: tracheal resection and reconstruction procedures in the hands of the endocrine surgeon,” Surgery, vol. 126, no. 6, pp. 1078–1088, 1999. View at Publisher · View at Google Scholar · View at Scopus
  49. R. W. Tsang, J. D. Brierley, W. J. Simpson, T. Panzarella, M. K. Gospodarowicz, and S. B. Sutcliffe, “The effects of surgery, radioiodine, and external radiation therapy on the clinical outcome of patients with differentiated thyroid carcinoma,” Cancer, vol. 82, no. 2, pp. 375–388, 1998. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Farahati, C. Reiners, M. Stuschke et al., “Differentiated thyroid cancer: impact of adjuvant external radiotherapy in patients with perithyroidal tumor infiltration (stage pT4),” Cancer, vol. 77, no. 1, pp. 172–180, 1996. View at Publisher · View at Google Scholar · View at Scopus
  51. D. L. Schwartz, M. J. Lobo, K. K. Ang et al., “Postoperative external beam radiotherapy for differentiated thyroid cancer: outcomes and morbidity with conformal treatment,” International Journal of Radiation Oncology Biology Physics, vol. 74, no. 4, pp. 1083–1091, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. B. D. Rosenbluth, V. Serrano, L. Happersett et al., “Intensity-modulated radiation therapy for the treatment of nonanaplastic thyroid cancer,” International Journal of Radiation Oncology Biology Physics, vol. 63, no. 5, pp. 1419–1426, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. A. C. Chiu, E. S. Delpassand, and S. I. Sherman, “Prognosis and treatment of brain metastases in thyroid carcinoma,” The Journal of Clinical Endocrinology and Metabolism, vol. 82, no. 11, pp. 3637–3642, 1997. View at Scopus
  54. S. I. Sherman, R. M. Tuttle, R. T. Kloos, et al., “Thyroid carcinoma: practice guidelines in oncology,” Journal of the National Comprehensive Cancer Network, vol. 1, 2009.
  55. R. R. McWilliams, C. Giannini, I. D. Hay, J. L. Atkinson, S. L. Stafford, and J. C. Buckner, “Management of brain metastases from thyroid carcinoma: a study of 16 pathologically confirmed cases over 25 years,” Cancer, vol. 98, no. 2, pp. 356–362, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. I. Y. Kim, D. Kondziolka, A. Niranjan, J. C. Flickinger, and L. D. Lunsford, “Gamma knife radiosurgery for metastatic brain tumors from thyroid cancer,” Journal of Neuro-Oncology, vol. 93, no. 3, pp. 355–359, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. M. Luster, F. Lippi, B. Jarzab et al., “rhTSH-aided radioiodine ablation and treatment of differentiated thyroid carcinoma: a comprehensive review,” Endocrine-Related Cancer, vol. 12, no. 1, pp. 49–64, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. C. F. A. Eustatia-Rutten, J. A. Romijn, M. J. Guijt et al., “Outcome of palliative embolization of bone metastases in differentiated thyroid carcinoma,” The Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 7, pp. 3184–3189, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. Z.-L. Qiu, H.-J. Song, Y.-H. Xu, and Q.-Y. Luo, “Efficacy and survival analysis of 131I therapy for bone metastases from differentiated thyroid cancer,” The Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 10, pp. 3078–3086, 2011. View at Publisher · View at Google Scholar · View at PubMed
  60. Y. Orita, I. Sugitani, K. Toda, J. Manabe, and Y. Fujimoto, “Zoledronic acid in the treatment of bone metastases from differentiated thyroid carcinoma,” Thyroid, vol. 21, no. 1, pp. 31–35, 2011. View at Publisher · View at Google Scholar · View at PubMed
  61. G. Ronga, M. Filesi, T. Montesano et al., “Lung metastases from differentiated thyroid carcinoma. A 40 years' experience,” Quarterly Journal of Nuclear Medicine and Molecular Imaging, vol. 48, no. 1, pp. 12–19, 2004. View at Scopus
  62. V. Fatourechi, I. D. Hay, H. Javedan, G. A. Wiseman, B. P. Mullan, and C. A. Gorman, “Lack of impact of radioiodine therapy in tg-positive, diagnostic whole-body scan-negative patients with follicular cell-derived thyroid cancer,” The Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 4, pp. 1521–1526, 2002. View at Publisher · View at Google Scholar · View at Scopus
  63. J. D. Pineda, T. Lee, K. Ain, J. C. Reynolds, and J. Robbins, “Iodine-131 therapy for thyroid cancer patients with elevated thyroglobulin and negative diagnostic scan,” The Journal of Clinical Endocrinology and Metabolism, vol. 80, no. 5, pp. 1488–1492, 1995. View at Scopus
  64. F. Pacini, L. Agate, R. Elisei et al., “Outcome of differentiated thyroid cancer with detectable serum Tg and negative diagnostic 131I whole body scan: comparison of patients treated with high 131I activities versus untreated patients,” The Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 9, pp. 4092–4097, 2001. View at Publisher · View at Google Scholar · View at Scopus
  65. R. M. Tuttle, D. W. Ball, D. Byrd et al., “Thyroid carcinoma,” JNCCN, vol. 8, no. 11, pp. 1228–1274, 2010.
  66. J. P. Droz, M. Schlumberger, P. Rougier, M. Ghosn, P. Gardet, and C. Parmentier, “Chemotherapy in metastatic nonanaplastic thyroid cancer: experience at the Institut Gustave-Roussy,” Tumori, vol. 76, no. 5, pp. 480–483, 1990. View at Scopus
  67. S. Ahuja and H. Ernst, “Chemotherapy of thyroid carcinoma,” Journal of Endocrinological Investigation, vol. 10, no. 3, pp. 303–310, 1987. View at Scopus
  68. F. Santini, V. Bottici, R. Elisei et al., “Cytotoxic effects of carboplatinum and epirubicin in the setting of an elevated serum thyrotropin for advanced poorly differentiated thyroid cancer,” The Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 9, pp. 4160–4165, 2002. View at Publisher · View at Google Scholar · View at Scopus
  69. B. R. Haugen, “Management of the patient with progressive radioiodine non-responsive disease,” Seminars in Surgical Oncology, vol. 16, no. 1, pp. 34–41, 1999. View at Scopus
  70. J. A. Gottlieb and C. S. Hill Jr., “Chemotherapy of thyroid cancer with adriamycin. Experience with 30 patients,” The New England Journal of Medicine, vol. 290, no. 4, pp. 193–197, 1974. View at Scopus
  71. J. A. Gottlieb, C. S. Hill Jr., M. L. Ibanez, and R. L. Clark, “Chemotherapy of thyroid cancer. An evaluation of experience with 37 patients,” Cancer, vol. 30, no. 3, pp. 848–853, 1972. View at Scopus
  72. K. B. Ain, M. J. Egorin, and P. A. DeSimone, “Treatment of anaplastic thyroid carcinoma with paclitaxel: phase 2 trial using ninety-six-hour infusion,” Thyroid, vol. 10, no. 7, pp. 587–594, 2000.
  73. J. A. Fagin, “How thyroid tumors start and why it matters: kinase mutants as targets for solid cancer pharmacotherapy,” The Journal of Endocrinology, vol. 183, no. 2, pp. 249–256, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. S. M. Jhiang, “The RET proto-oncogene in human cancers,” Oncogene, vol. 19, no. 49, pp. 5590–5597, 2000. View at Scopus
  75. S. M. Jhiang, J. E. Sagartz, Q. Tong et al., “Targeted expression of the ret/PTC1 oncogene induces papillary thyroid carcinomas,” Endocrinology, vol. 137, no. 1, pp. 375–378, 1996. View at Publisher · View at Google Scholar · View at Scopus
  76. C. Zafon, G. Obiols, J. Castellví et al., “Clinical significance of RET/PTC and p53 protein expression in sporadic papillary thyroid carcinoma,” Histopathology, vol. 50, no. 2, pp. 225–231, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. C. Ugolini, R. Giannini, C. Lupi et al., “Presence of BRAF V600E in very early stages of papillary thyroid carcinoma,” Thyroid, vol. 17, no. 5, pp. 381–388, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. T. Y. Kim, W. B. Kim, Y. S. Rhee et al., “The BRAF mutation is useful for prediction of clinical recurrence in low-risk patients with conventional papillary thyroid carcinoma,” Clinical Endocrinology, vol. 65, no. 3, pp. 364–368, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  79. M. Xing, W. H. Westra, R. P. Tufano et al., “BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer,” The Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 12, pp. 6373–6379, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. J. Fagin, “Molecular pathogenesis of tumors of thyroid follicular cells,” in Thyroid Cancer, J. Fagin, Ed., Kluwer Academic, Boston, Mass, USA, 1998.
  81. G. Garcia-Rostan, H. Zhao, R. L. Camp et al., “ras Mutations are associated with aggressive tumor phenotypes and poor prognosis in thyroid cancer,” Journal of Clinical Oncology, vol. 21, no. 17, pp. 3226–3235, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. P. Carmeliet, “Mechanisms of angiogenesis and arteriogenesis,” Nature Medicine, vol. 6, no. 4, pp. 389–395, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  83. A. D. Laird and J. M. Cherrington, “Small molecule tyrosine kinase inhibitors: clinical development of anticancer agents,” Expert Opinion on Investigational Drugs, vol. 12, no. 1, pp. 51–64, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  84. C. M. Lennard, A. Patel, J. Wilson et al., “Intensity of vascular endothelial growth factor expression is associated with increased risk of recurrence and decreased disease-free survival in papillary thyroid cancer,” Surgery, vol. 129, no. 5, pp. 552–558, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  85. M. Klein, J. M. Vignaud, V. Hennequin et al., “Increased expression of the vascular endothelial growth factor is a pejorative prognosis marker in papillary thyroid carcinoma,” The Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 2, pp. 656–658, 2001. View at Publisher · View at Google Scholar · View at Scopus
  86. R. T. Kloos, M. D. Ringel, M. V. Knopp, et al., “Phase II trial of sorafenib in metastatic thyroid cancer,” Journal of Clinical Oncology, vol. 27, no. 10, pp. 1675–1684, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  87. V. Gupta-Abramson, A. B. Troxel, A. Nellore et al., “Phase II trial of sorafenib in advanced thyroid cancer,” Journal of Clinical Oncology, vol. 26, no. 29, pp. 4714–4719, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  88. M. E. Cabanillas, S. G. Waguespack, Y. Bronstein et al., “Treatment with tyrosine kinase inhibitors for patients with differentiated thyroid cancer: the M. D. Anderson experience,” The Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 6, pp. 2588–2595, 2010. View at Publisher · View at Google Scholar · View at PubMed
  89. W. K. Dong, S. J. Young, S. J. Hye et al., “An orally administered multitarget tyrosine kinase inhibitor, SU11248, is a novel potent inhibitor of thyroid oncogenic RET/papillary thyroid cancer kinases,” The Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 10, pp. 4070–4076, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  90. S. J. Dawson, N. M. Conus, G. C. Toner et al., “Sustained clinical responses to tyrosine kinase inhibitor sunitinib in thyroid carcinoma,” Anti-Cancer Drugs, vol. 19, no. 5, pp. 547–552, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  91. E. E. Cohen, B. M. Needles, K. J. Cullen, et al., “Phase 2 study of sunitinib in refractory thyroid cancer,” Journal of Clinical Oncology, vol. 26, article 6025, 2008.
  92. A. Ravaud, C. Fouchardiere, F. Courbon, et al., “Sunitinib in patients with refractory advanced thyroid cancer: the THYSU phase II trial,” Journal of Clinical Oncology, vol. 26, article 6025, 2008.
  93. L. L. Carr, D. A. Mankoff, B. H. Goulart et al., “Phase II study of daily sunitinib in FDG-PET-positive, iodine-refractory differentiated thyroid cancer and metastatic medullary carcinoma of the thyroid with functional imaging correlation,” Clinical Cancer Research, vol. 16, no. 21, pp. 5260–5268, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  94. K. C. Bible, R. C. Smallridge, W. J. Maples, et al., “Phase II trial of pazopanib in progressive, metastatic, iodine-insensitive differentiated thyroid cancers,” Journal of Clinical Oncology, vol. 27, article 3521, 2009.
  95. A. Polverino, A. Coxon, C. Starnes et al., “AMG 706, an oral, multikinase inhibitor that selectively targets vascular endothelial growth factor, platelet-derived growth factor, and kit receptors, potently inhibits angiogenesis and induces regression in tumor xenografts,” Cancer Research, vol. 66, no. 17, pp. 8715–8721, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  96. L. S. Rosen, R. Kurzrock, M. Mulay et al., “Safety, pharmacokinetics, and efficacy of AMG 706, an oral multikinase inhibitor, in patients with advanced solid tumors,” Journal of Clinical Oncology, vol. 25, no. 17, pp. 2369–2376, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  97. S. I. Sherman, L. J. Wirth, J. P. Droz et al., “Motesanib diphosphate in progressive differentiated thyroid cancer,” The New England Journal of Medicine, vol. 359, no. 1, pp. 31–42, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  98. H. S. Rugo, R. S. Herbst, G. Liu et al., “Phase I trial of the oral antiangiogenesis agent AG-013736 in patients with advanced solid tumors: pharmacokinetic and clinical results,” Journal of Clinical Oncology, vol. 23, no. 24, pp. 5474–5483, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  99. E. E. W. Cohen, L. S. Rosen, E. E. Vokes et al., “Axitinib is an active treatment for all histologic subtypes of advanced thyroid cancer: results from a phase II study,” Journal of Clinical Oncology, vol. 26, no. 29, pp. 4708–4713, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  100. N. A. Pennell, G. H. Daniels, R. I. Haddad et al., “A phase II study of gefitinib in patients with advanced thyroid cancer,” Thyroid, vol. 18, no. 3, pp. 317–323, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  101. M. E. Cabanillas, M. S. Brose, D. A. Ramies, Y. Lee, D. Miles, and S. I. Sherman, “Anti-tumor activity observed in a cohort of patients with differentiated thyroid cancer in a phase 1 study of cabozantinib (XL184),” in Proceedings of the 81st Annual Meeting of the American Thyroid Association, abstract 0179, 2011.
  102. R. Mineo, A. Costantino, F. Frasca et al., “Activation of the Hepatocyte Growth Factor (HGF)-Met system in papillary thyroid cancer: biological effects of HGF in thyroid cancer cells depend on Met expression levels,” Endocrinology, vol. 145, no. 9, pp. 4355–4365, 2004. View at Publisher · View at Google Scholar · View at PubMed
  103. V. M. Wasenius, S. Hemmer, M. L. Karjalainen-Lindsberg, N. N. Nupponen, K. Franssila, and H. Joensuu, “MET receptor tyrosine kinase sequence alterations in differentiated thyroid carcinoma,” The American Journal of Surgical Pathology, vol. 29, no. 4, pp. 544–549, 2005. View at Publisher · View at Google Scholar
  104. R. Kurzrock, S. I. Sherman, D. S. Hong, et al., “A Phase I study of XL184, a MET, VEGFR2, a RET kinase inhibitor orally administered to patients with advanced malignancies: including a subgroup of patients with medullary thyroid cancer (MTC),” in Proceedings of the 20th EORTC-NCI-AACR Symposium on Molecular Targets and Cancer Therapeutics, Geneva, Switzerland, 2008, abstract no. 379.
  105. S. Sherman, B. Jarzab, M. E. Cabanillas, et al., “A phase II trial of the multitargeted kinase inhibitor E7080 in advanced radioiodine (RAI)-refractory differentiated thyroid cancer (DTC),” Journal of Clinical Oncology, vol. 29, 2011.
  106. G. K. Schwartz, S. Robertson, A. Shen, et al., “A Phase i study of XL281, a potent and selective inhibitor of RAF kinases, administered orally to patients with advanced solid tumors,” in Proceedings of the 20th EORTC-NCI-AACR Symposium on Molecular Targets and Cancer Therapeutics, Geneva, Switzerland, 2008, Abstract no. 383.
  107. K. T. Flaherty, I. Puzanov, K. B. Kim et al., “Inhibition of mutated, activated BRAF in metastatic melanoma,” The New England Journal of Medicine, vol. 363, no. 9, pp. 809–819, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  108. K. B. Ain, C. Lee, and K. D. Williams, “Phase II trial of thalidomide for therapy of radioiodine-unresponsive and rapidly progressive thyroid carcinomas,” Thyroid, vol. 17, no. 7, pp. 663–670, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  109. K. Ain, C. Lee, K. Holbrook, J. Dziba, and K. Williams, “Phase II study of lenalidomide in distantly metastatic, rapidly progressive, and radioiodine-unresponsive thyroid carcinomas: preliminary results,” Journal of Clinical Oncology, vol. 26, 2008.
  110. A. J. Van Herle, M. L. Agatep, D. N. Padua et al., “Effects of 13 cis-retinoic acid on growth and differentiation of human follicular carcinoma cells (UCLA RO 82 W-1) in vitro,” The Journal of Clinical Endocrinology and Metabolism, vol. 71, no. 3, pp. 755–763, 1990. View at Scopus
  111. Y. Y. Liu, M. P. Stokkel, A. M. Pereira et al., “Bexarotene increases uptake of radioiodide in metastases of differentiated thyroid carcinoma,” European Journal of Endocrinology, vol. 154, no. 4, pp. 525–531, 2006. View at Publisher · View at Google Scholar · View at PubMed
  112. E. Kebebew, M. Peng, E. Reiff et al., “A phase II trial of rosiglitazone in patients with thyroglobulin-positive and radioiodine-negative differentiated thyroid cancer,” Surgery, vol. 140, no. 6, pp. 960–967, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  113. Y. Su, R. Tuttle, M. Fury, et al., “A phase II study of single agent depsipeptide (DEP) in patients (pts) wiht radioactive iodine (RAI)-refractory, metastatic, thyroid carcinoma: preliminary toxicity and efficacy experience,” Journal of Clinical Oncology, vol. 24, 2006.
  114. L. Ho, R. K. Grewal, R. Leboeuf, et al., “Reacquision of RAI uptake in RAI-refractory, metastatic thyroid cancers by pretreatment with the selective MEK inhibitor, selumetinib,” in Proceedings of the 81st Annual Meeting of the American Thyroid Association, 2011.
  115. M. E. Cabanillas, M. I. Hu, J. B. Durand, and N. L. Busaidy, “Challenges associated with tyrosine kinase inhibitor therapy for metastatic thyroid cancer,” Journal of Thyroid Research, vol. 2011, Article ID 985780, 9 pages, 2011. View at Publisher · View at Google Scholar · View at PubMed