About this Journal Submit a Manuscript Table of Contents
Journal of Thyroid Research
Volume 2012 (2012), Article ID 815079, 7 pages
http://dx.doi.org/10.1155/2012/815079
Research Article

Proteomic Profiling of Thyroid Papillary Carcinoma

1Division of Diabetes, Metabolism and Endocrinology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan
2Department of Oral Pathology and Diagnosis, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
3Ban Thyroid Clinic, 2-11-16 Jiyugaoka, Megro-ku, Tokyo 152-0035, Japan
4Division of Endocrine Surgery, Department of Surgery, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
5Biosys Technologies, Inc., 2-13-18 Nakane, Meguro-ku, Tokyo 152-0031, Japan
6Comprehensive Research Center of Oral Cancer, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan

Received 12 October 2011; Accepted 6 November 2011

Academic Editor: Fausto Bogazzi

Copyright © 2012 Yoshiyuki Ban et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. A. Hundahl, I. D. Fleming, A. M. Fremgen, and H. R. Menck, “A National Cancer Data Base report on 53,856 cases of thyroid carcinoma treated in the U.S., 1985–1995,” Cancer, vol. 83, no. 12, pp. 2638–2648, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. J. M. Gasent Blesa, E. Grande Pulido, M. Provencio Pulla, et al., “Old and new insights in the treatment of thyroid carcinoma,” Journal of Thyroid Research, vol. 2010, Article ID 279468, 16 pages, 2010. View at Publisher · View at Google Scholar
  3. J. A. Fagin, “Genetic basis of endocrine disease 3: molecular defects in thyroid gland neoplasia,” Journal of Clinical Endocrinology and Metabolism, vol. 75, no. 6, pp. 1398–1400, 1992. View at Publisher · View at Google Scholar · View at Scopus
  4. E. T. Kimura, M. N. Nikiforova, Z. Zhu, J. A. Knauf, Y. E. Nikiforov, and J. A. Fagin, “High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma,” Cancer Research, vol. 63, no. 7, pp. 1454–1457, 2003. View at Scopus
  5. J. A. Fagin, “Challenging dogma in thyroid cancer molecular genetics—role of RET/PTC and BRAF in tumor initiation,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 9, pp. 4264–4266, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Mazzanti, M. A. Zeiger, N. Costourous et al., “Using Gene Expression Profiling to Differentiate Benign versus Malignant Thyroid Tumors,” Cancer Research, vol. 64, no. 8, pp. 2898–2903, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. D. J. Finley, N. Arora, B. Zhu, L. Gallagher, and T. J. Fahey, “Molecular profiling distinguishes papillary carcinoma from benign thyroid nodules,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 7, pp. 3214–3223, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. J. M. Cerutti, R. Delcelo, M. J. Amadei et al., “A preoperative diagnostic test that distinguishes benign from malignant thyroid carcinoma based on gene expression,” Journal of Clinical Investigation, vol. 113, no. 8, pp. 1234–1242, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. B. R. Haugen and M. W. Duncan, “Applications of proteomics to thyroid neoplasms: are we there yet?” Thyroid, vol. 20, no. 10, pp. 1051–1052, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Kawamura, M. Nomura, H. Tojo et al., “Proteomic analysis of laser-microdissected paraffin-embedded tissues: (1) Stage-related protein candidates upon non-metastatic lung adenocarcinoma,” Journal of Proteomics, vol. 73, no. 6, pp. 1089–1099, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Zybailov, M. K. Coleman, L. Florens, and M. P. Washburn, “Correlation of relative abundance ratios derived from peptide ion chromatograms and spectrum counting for quantitative proteomic analysis using stable isotope labeling,” Analytical Chemistry, vol. 77, no. 19, pp. 6218–6224, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Eszlinger, K. Krohn, A. Kukulska, B. Jarzab, and R. Paschke, “Perspectives and limitations of microarray-based gene expression profiling of thyroid tumors,” Endocrine Reviews, vol. 28, no. 3, pp. 322–338, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Morimura, Y. Tezuka, N. Watanabe et al., “Molecular cloning of NPNT: a novel adhesion molecule that interacts with α8β integrin,” The Journal of Biological Chemistry, vol. 276, no. 45, pp. 42172–42181, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Brandenberger, A. Schmidt, J. Linton et al., “Identification and characterization of a novel extracellular matrix protein nephronectin that is associated with integrin α8β1 in the embryonic kidney,” Journal of Cell Biology, vol. 154, no. 2, pp. 447–458, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. B. L. Eckhardt, B. S. Parker, R. K. van Laar et al., “Genomic analysis of a spontaneous model of breast cancer metastasis to bone reveals a role for the extracellular matrix,” Molecular Cancer Research, vol. 3, no. 1, pp. 1–13, 2005. View at Scopus
  16. T. Schallus, C. Jaeckh, K. Fehér et al., “Malectin: a novel carbohydrate-binding protein of the endoplasmic reticulum and a candidate player in the early steps of protein N-glycosylation,” Molecular Biology of the Cell, vol. 19, no. 8, pp. 3404–3414, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. L. N. Muller, C. Muhle-Goll, and M. B. Biskup, “The Glc2Man2-fragment of the N-glycan precursor—a novel ligand for the glycan-binding protein malectin?” Organic and Biomolecular Chemistry, vol. 8, no. 14, pp. 3294–3299, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Schallus, K. Feher, U. Sternberg, V. Rybin, and C. Muhle-Goll, “Analysis of the specific interactions between the lectin domain of malectin and diglucosides,” Glycobiology, vol. 20, no. 8, pp. 1010–1020, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Aebi, R. Bernasconi, S. Clerc, and M. Molinari, “N-glycan structures: recognition and processing in the ER,” Trends in Biochemical Sciences, vol. 35, no. 2, pp. 74–82, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Z. Lederkremer, “Glycoprotein folding, quality control and ER-associated degradation,” Current Opinion in Structural Biology, vol. 19, no. 5, pp. 515–523, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Galli, R. Bernasconi, T. Soldà, V. Calanca, and M. Molinari, “Malectin participates in a backup glycoprotein quality control pathway in the mammalian ER,” PLoS ONE, vol. 6, no. 1, article e16304, 2011. View at Publisher · View at Google Scholar