About this Journal Submit a Manuscript Table of Contents
Molecular Biology International
Volume 2011 (2011), Article ID 437301, 7 pages
http://dx.doi.org/10.4061/2011/437301
Review Article

MiR-146a in Immunity and Disease

Institute for Research in Biomedicine, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland

Received 17 December 2010; Accepted 17 February 2011

Academic Editor: Alessandro Desideri

Copyright © 2011 Nicole Rusca and Silvia Monticelli. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Navarro and J. Lieberman, “Small RNAs guide hematopoietic cell differentiation and function,” Journal of Immunology, vol. 184, no. 11, pp. 5939–5947, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. A. E. Pasquinelli, S. Hunter, and J. Bracht, “MicroRNAs: a developing story,” Current Opinion in Genetics and Development, vol. 15, no. 2, pp. 200–205, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Basso, P. Sumazin, P. Morozov et al., “Identification of the human mature B cell miRNome,” Immunity, vol. 30, no. 5, pp. 744–752, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Landgraf, M. Rusu, R. Sheridan et al., “A mammalian microRNA expression atlas based on small RNA library sequencing,” Cell, vol. 129, no. 7, pp. 1401–1414, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Monticelli, K. M. Ansel, C. Xiao et al., “MicroRNA profiling of the murine hematopoietic system,” Genome Biology, vol. 6, no. 8, p. R71, 2005. View at Scopus
  6. J. R. Neilson, G. X. Y. Zheng, C. B. Burge, and P. A. Sharp, “Dynamic regulation of miRNA expression in ordered stages of cellular development,” Genes and Development, vol. 21, no. 5, pp. 578–589, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Wu, J. R. Neilson, P. Kumar et al., “miRNA profiling of naïve, effector and memory CD8 T cells,” PLoS ONE, vol. 2, no. 10, article e1020, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. G. A. Calin and C. M. Croce, “MicroRNA signatures in human cancers,” Nature Reviews Cancer, vol. 6, no. 11, pp. 857–866, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Kanellopoulou and S. Monticelli, “A role for microRNAs in the development of the immune system and in the pathogenesis of cancer,” Seminars in Cancer Biology, vol. 18, no. 2, pp. 79–88, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. L.-F. Lu, M. P. Boldin, A. Chaudhry et al., “Function of miR-146a in controlling treg cell-mediated regulation of Th1 responses,” Cell, vol. 142, no. 6, pp. 914–929, 2010. View at Publisher · View at Google Scholar
  11. C. Chassin, M. Kocur, J. Pott et al., “MiR-146a mediates protective innate immune tolerance in the neonate intestine,” Cell Host and Microbe, vol. 8, no. 4, pp. 358–368, 2010. View at Publisher · View at Google Scholar
  12. K. D. Taganov, M. P. Boldin, K. J. Chang, and D. Baltimore, “NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 33, pp. 12481–12486, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Curtale, F. Citarella, C. Carissimi et al., “An emerging player in the adaptive immune response: microRNA-146a is a modulator of IL-2 expression and activation-induced cell death in T lymphocytes,” Blood, vol. 115, no. 2, pp. 265–273, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. M. A. Nahid, K. M. Pauley, M. Satoh, and E. K. L. Chan, “miR-146a is critical for endotoxin-induced tolerance: implication in innate immunity,” Journal of Biological Chemistry, vol. 284, no. 50, pp. 34590–34599, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Jurkin, Y. M. Schichl, R. Koeffel et al., “miR-146a is differentially expressed by myeloid dendritic cell subsets and desensitizes cells to TLR2-dependent activation,” Journal of Immunology, vol. 184, no. 9, pp. 4955–4965, 2010. View at Publisher · View at Google Scholar
  16. M. M. Perry, S. A. Moschos, A. E. Williams, N. J. Shepherd, H. M. Larner-Svensson, and M. A. Lindsay, “Rapid changes in microrna-146a expression negatively regulate the IL-1β-induced inflammatory response in human lung alveolar epithelial cells1,” Journal of Immunology, vol. 180, no. 8, pp. 5689–5698, 2008. View at Scopus
  17. C. Labbaye, I. Spinello, M. T. Quaranta et al., “A three-step pathway comprising PLZF/miR-146a/CXCR4 controls megakaryopoiesis,” Nature Cell Biology, vol. 10, no. 7, pp. 788–801, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Bhaumik, G. K. Scott, S. Schokrpur, C. K. Patil, J. Campisi, and C. C. Benz, “Expression of microRNA-146 suppresses NF-κB activity with reduction of metastatic potential in breast cancer cells,” Oncogene, vol. 27, no. 42, pp. 5643–5647, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. X. Wang, S. Tang, S. Y. Le et al., “Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth,” PLoS ONE, vol. 3, no. 7, article e2557, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. S. L. Lin, A. Chiang, D. Chang, and S. Y. Ying, “Loss of mir-146a function in hormone-refractory prostate cancer,” RNA, vol. 14, no. 3, pp. 417–424, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Li, T. G. VandenBoom, Z. Wang et al., “miR-146a suppresses invasion of pancreatic cancer cells,” Cancer Research, vol. 70, no. 4, pp. 1486–1495, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Jazdzewski, E. L. Murray, K. Franssila, B. Jarzab, D. R. Schoenberg, and A. De La Chapelle, “Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 20, pp. 7269–7274, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Hou, P. Wang, L. Lin et al., “MicroRNA-146a feedback inhibits RIG-I-dependent type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2,” Journal of Immunology, vol. 183, no. 3, pp. 2150–2158, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. J. E. Cameron, Q. Yin, C. Fewell et al., “Epstein-Barr virus latent membrane protein 1 induces cellular microRNA miR-146a, a modulator of lymphocyte signaling pathways,” Journal of Virology, vol. 82, no. 4, pp. 1946–1958, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. M. A. Newman and S. M. Hammond, “Emerging paradigms of regulated microRNA processing,” Genes and Development, vol. 24, no. 11, pp. 1086–1092, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. J. G. Ruby, C. H. Jan, and D. P. Bartel, “Intronic microRNA precursors that bypass Drosha processing,” Nature, vol. 448, no. 7149, pp. 83–86, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. B. S. Cobb, T. B. Nesterova, E. Thompson et al., “T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer,” Journal of Experimental Medicine, vol. 201, no. 9, pp. 1367–1373, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. S. B. Koralov, S. A. Muljo, G. R. Galler et al., “Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage,” Cell, vol. 132, no. 5, pp. 860–874, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. S. A. Muljo, K. M. Ansel, C. Kanellopoulou, D. M. Livingston, A. Rao, and K. Rajewsky, “Aberrant T cell differentiation in the absence of Dicer,” Journal of Experimental Medicine, vol. 202, no. 2, pp. 261–269, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. D. O'Carroll, I. Mecklenbrauker, P. P. Das et al., “A Slicer-independent role for Argonaute 2 in hematopoiesis and the microRNA pathway,” Genes and Development, vol. 21, no. 16, pp. 1999–2004, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Z. Chen, L. Li, H. F. Lodish, and D. P. Bartel, “MicroRNAs modulate hematopoietic lineage differentiation,” Science, vol. 303, no. 5654, pp. 83–86, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. Q. J. Li, J. Chau, P. J. R. Ebert et al., “miR-181a is an intrinsic modulator of T cell sensitivity and selection,” Cell, vol. 129, no. 1, pp. 147–161, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. R. M. O'Connell, D. S. Rao, A. A. Chaudhuri et al., “Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder,” Journal of Experimental Medicine, vol. 205, no. 3, pp. 585–594, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Rodriguez, E. Vigorito, S. Clare et al., “Requirement of bic/microRNA-155 for normal immune function,” Science, vol. 316, no. 5824, pp. 608–611, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. T. H. Thai, D. P. Calado, S. Casola et al., “Regulation of the germinal center response by MicroRNA-155,” Science, vol. 316, no. 5824, pp. 604–608, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Ventura, A. G. Young, M. M. Winslow et al., “Targeted deletion reveals essential and overlapping functions of the miR-17~92 family of miRNA clusters,” Cell, vol. 132, no. 5, pp. 875–886, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. E. Vigorito, K. L. Perks, C. Abreu-Goodger et al., “microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells,” Immunity, vol. 27, no. 6, pp. 847–859, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Xiao, D. P. Calado, G. Galler et al., “MiR-150 controls B cell differentiation by targeting the transcription factor c-myb,” Cell, vol. 131, no. 1, pp. 146–159, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. B. P. Lewis, C. B. Burge, and D. P. Bartel, “Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets,” Cell, vol. 120, no. 1, pp. 15–20, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. F. Sallusto and A. Lanzavecchia, “Heterogeneity of CD4+ memory T cells: functional modules for tailored immunity,” European Journal of Immunology, vol. 39, no. 8, pp. 2076–2082, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Sandberg, J. R. Neilson, A. Sarma, P. A. Sharp, and C. B. Burge, “Proliferating cells express mRNAs with shortened 3 untranslated regions and fewer microRNA target sites,” Science, vol. 320, no. 5883, pp. 1643–1647, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. K. D. Taganov, M. P. Boldin, and D. Baltimore, “MicroRNAs and Immunity: tiny players in a big field,” Immunity, vol. 26, no. 2, pp. 133–137, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. F. Bazzoni, M. Rossato, M. Fabbri et al., “Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 13, pp. 5282–5287, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. G. Liu, A. Friggeri, Y. Yang, Y. J. Park, Y. Tsuruta, and E. Abraham, “miR-147, a microRNA that is induced upon toll-like receptor stimulation, regulates murine macrophage inflammatory responses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 37, pp. 15819–15824, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. R. M. O'Connell, K. D. Taganov, M. P. Boldin, G. Cheng, and D. Baltimore, “MicroRNA-155 is induced during the macrophage inflammatory response,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 5, pp. 1604–1609, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. F. J. Sheedy, E. Palsson-Mcdermott, E. J. Hennessy et al., “Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21,” Nature Immunology, vol. 11, no. 2, pp. 141–147, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. H. He, K. Jazdzewski, W. Li et al., “The role of microRNA genes in papillary thyroid carcinoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 52, pp. 19075–19080, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. Suzuki, H. W. Kim, M. Ashraf, and H. Haider, “Diazoxide potentiates mesenchymal stem cell survival via NF-κB-dependent miR-146a expression by targeting Fas,” American Journal of Physiology, vol. 299, no. 4, pp. H1077–H1082, 2010. View at Publisher · View at Google Scholar
  49. S. E. Godshalk, T. Paranjape, S. Nallur, et al., “A variant in a MicroRNA complementary site in the 3 UTR of the KIT oncogene increases risk of acral melanoma,” Oncogene, vol. 30, no. 13, pp. 1542–1550, 2011.
  50. W. Yang, T. P. Chendrimada, Q. Wang et al., “Modulation of microRNA processing and expression through RNA editing by ADAR deaminases,” Nature Structural and Molecular Biology, vol. 13, no. 1, pp. 13–21, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. K. Nishikura, “Functions and regulation of RNA editing by ADAR deaminases,” Annual Review of Biochemistry, vol. 79, pp. 321–349, 2010. View at Scopus
  52. Y. Kawahara, B. Zinshteyn, P. Sethupathy, H. Iizasa, A. G. Hatzigeorgiou, and K. Nishikura, “Redirection of silencing targets by adenosine-to-inosine editing of miRNAs,” Science, vol. 315, no. 5815, pp. 1137–1140, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. N. Schöler, C. Langer, H. Döhner, C. Buske, and F. Kuchenbauer, “Serum microRNAs as a novel class of biomarkers: a comprehensive review of the literature,” Experimental Hematology, vol. 38, no. 12, pp. 1126–1130, 2010. View at Publisher · View at Google Scholar
  54. P. S. Mitchell, R. K. Parkin, E. M. Kroh et al., “Circulating microRNAs as stable blood-based markers for cancer detection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 30, pp. 10513–10518, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. X. Chen, Y. Ba, L. Ma et al., “Characterization of microRNAs in serumml: a novel class of biomarkers for diagnosis of cancer and other diseases,” Cell Research, vol. 18, no. 10, pp. 997–1006, 2008. View at Publisher · View at Google Scholar · View at Scopus