About this Journal Submit a Manuscript Table of Contents
Molecular Biology International
Volume 2011 (2011), Article ID 507346, 13 pages
http://dx.doi.org/10.4061/2011/507346
Research Article

Molecular Characterization and SNP Detection of CD14 Gene of Crossbred Cattle

1Animal Genetics Division, Indian Veterinary Research Institute, Izatnagar, Pin-243122, India
2Project Directorate on Poultry, Rajendranagar, Hyderabad, India
3Animal Nutrition Division, Indian Veterinary Research Institute, Izatnagar, Pin-243122, India
4Dairy Cattle Breeding Division, National Dairy Research Institute, Karnal, Haryana, Pin-132001, India

Received 27 April 2011; Revised 19 July 2011; Accepted 19 July 2011

Academic Editor: Andrzej Kloczkowski

Copyright © 2011 Aruna Pal et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. A. Goldsby, T. J. Kindt, and B. A. Osborne, Kuby Immunology, W.H. Freeman, New York, NY, USA, 4th edition, 2000.
  2. D. Filipp, K. Alizadeh-Khiavi, C. Richardson et al., “Soluble CD14 enriched in colostrum and milk induces B cell growth and differentiation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 2, pp. 603–608, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. J. W. Lee, M. J. Paape, T. H. Elsasser, and X. Zhao, “Recombinant soluble CD14 reduces severity of intramammary infection by Escherichia coli,” Infection and Immunity, vol. 71, no. 7, pp. 4034–4039, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. N. W. J. Schroder, B. Opitz, N. Lamping et al., “Involvement of lipopolysaccharide binding protein, CD14, and toll-like receptors in the initiation of innate immune responses by Treponema glycolipids,” Journal of Immunology, vol. 165, no. 5, pp. 2683–2693, 2000. View at Scopus
  5. H. J. Yoon, J. H. Shin, S. H. Yang et al., “Association of the CD14 gene-159C polymorphism with progression of IgA nephropathy,” Journal of Medical Genetics, vol. 40, no. 2, pp. 104–108, 2003. View at Scopus
  6. J. A. Hubacek, J. Pit'ha, Z. Škodová, V. Staněk, and R. Poledne, “C(-260) T polymorphism in the promoter of the CD14 monocyte receptor gene as a risk factor for myocardial infarction,” Circulation, vol. 99, no. 25, pp. 3218–3220, 1999.
  7. C. Härtel, D. Finas, P. Ahrens et al., “Polymorphisms of genes involved in innate immunity: association with preterm delivery,” Molecular Human Reproduction, vol. 10, no. 12, pp. 911–915, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. S. Guerra, I. C. Lohman, T. D. LeVan, A. L. Wright, F. D. Martinez, and M. Halonen, “The differential effect of genetic variation on soluble CD14 levels in human plasma and milk,” American Journal of Reproductive Immunology, vol. 52, no. 3, pp. 204–211, 2004. View at Scopus
  9. 17th Indian Livestock Census.All India Summary report. Livestock, Poultry, Agricultural machinery and implements and Fishery Statistics. Government of India. Ministry of Agriculture. Department of Animal Husbandry and Dairying.Krishi Bhavan, New Delhi, India, 2003.
  10. A. Ikeda, M. Takata, T. Taniguchi, and K. Sekikawa, “Molecular cloning of bovine CD14 gene,” Journal of Veterinary Medical Science, vol. 59, no. 8, pp. 715–719, 1997. View at Scopus
  11. G. Diamond, J. P. Russell, and C. L. Bevins, “Inducible expression of an antibiotic peptide gene in lipopolysaccharide-challenged tracheal epithelial cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 10, pp. 5156–5160, 1996. View at Scopus
  12. P. E. Baker and K. F. Knoblock, “Bovine costimulator. II. Generation and maintenance of a bovine costimulator-dependent bovine lymphoblastoid cell line,” Veterinary Immunology and Immunopathology, vol. 3, no. 4, pp. 381–397, 1982. View at Scopus
  13. J. Sambrook and D. W. Russell, Molecular Cloning: A Laboratory Manual, vol. 1, Cold Spring Harbor Laboratory, New York, NY, USA, 3rd edition, 2001.
  14. J. I. Kim, J. L. Chang, S. J. Mi et al., “Crystal structure of CD14 and its implications for lipopolysaccharide signaling,” The Journal of Biological Chemistry, vol. 280, no. 12, pp. 11347–11351, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. B. Petersen, T. N. Petersen, P. Andersen, M. Nielsen, and C. Lundegaard, “A generic method for assignment of reliability scores applied to solvent accessibility predictions,” BMC Structural Biology, vol. 9, article 51, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. T. Ebina, H. Toh, and Y. Kuroda, “Loop-length-dependent SVM prediction of domain linkers for high-throughput structural proteomics,” Biopolymers, vol. 92, no. 1, pp. 1–8, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. M. D. Cunningham, R. A. Shapiro, C. Seachord, K. Ratcliffe, L. Cassiano, and R. P. Darveau, “CD14 employs hydrophilic regions to 'capture' lipopolysaccharides,” Journal of Immunology, vol. 164, no. 6, pp. 3255–3263, 2000. View at Scopus
  18. M. Muroi, T. Ohnishi, and K. I. Tanamoto, “Regions of the mouse CD14 molecule required for Toll-like receptor 2- and 4-mediated activation of NF-κB,” The Journal of Biological Chemistry, vol. 277, no. 44, pp. 42372–42379, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. F. Kiefer, K. Arnold, M. Künzli, L. Bordoli, and T. Schwede, “The SWISS-MODEL Repository and associated resources,” Nucleic Acids Research, vol. 37, no. 1, pp. D387–D392, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. Y. Wang, D. S. Zarlenga, M. J. Paape, and G. E. Dahl, “Recombinant bovine soluble CD14 sensitizes the mammary gland to lipopolysaccharide,” Veterinary Immunology and Immunopathology, vol. 86, no. 1-2, pp. 115–124, 2002. View at Publisher · View at Google Scholar
  21. E. M. Ibeagha-Awemu, J. W. Lee, A. E. Ibeagha, and X. Zhao, “Bovine CD14 gene characterization and relationship between polymorphisms and surface expression on monocytes and polymorphonuclear neutrophils,” BMC Genetics, vol. 9, article 50, 2008. View at Publisher · View at Google Scholar · View at PubMed
  22. A. Pal and P. N. Chatterjee, “Molecular cloning and characterization of CD14 gene in goat,” Small Ruminant Research, vol. 82, no. 2-3, pp. 84–87, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Pal, Molecular characterization and genetic polymorphism of CD14 gene in riverine buffalo, Ph.D. thesis, Indian Veterinary Research Institute, Izatnagar, India, 2003.
  24. A. Pal and P. N. Chatterjee, “Molecular characterization of growth hormone gene in riverine buffaloes,” Buffalo Bulletin, vol. 29, no. 4, 2010.
  25. A. Pal, A. Sharma, and T. K. Bhattacharya, “Molecular characterization of CD14 cDNA in Bubalus bubalis and Capra hircus,” Conference on Development of Dairy Cattle. NDRI, Eastern Regional Station, Kalyani, December 2008.
  26. S. Gordon, “Pattern recognition receptors: doubling up for the innate immune response,” Cell, vol. 111, no. 7, pp. 927–930, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. E. Ferrero, C. L. Hsieh, U. Francke, and S. M. Goyert, “CD14 is a member of the family of leucine-rich proteins and is encoded by a gene syntenic with multiple receptor genes,” Journal of Immunology, vol. 145, no. 1, pp. 331–336, 1990. View at Scopus
  28. A. Pal and P. N. Chatterjee, “Comparative studies on disease resistance in cattle, buffalo, goat and sheep in hot arid region of Birbhum district of West Bengal,” in Silver Jubilee International conference on Physiological Capacity Building in Livestock under Changing Climatic Scenario, ociety of Animal Physiologist of India, IVRI, November 2010.
  29. M. H. Julius, D. Fillip, and K. A. Khiavi, “Bovine lactation associated immunotropic protein (CD14) encoding gene and its application in the B cell activation,” Patent: JP 2001504695-A, 2002.
  30. M. Setoguchi, N. Nasu, S. Yoshida, Y. Higuchi, S. Akizuki, and S. Yamamoto, “Mouse and human CD14 (myeloid cell-specific leucine-rich glycoprotein) primary structure deduced from cDNA clones,” Biochimica et Biophysica Acta, vol. 1008, no. 2, pp. 213–222, 1989.
  31. N. Takai, M. Kataoka, Y. Higuchi, K. Matsuura, and S. Yamamoto, “Primary structure of rat CD14 and characteristics of rat CD14, cytokine, and NO synthase mRNA expression in mononuclear phagocyte system cells in response to LPS,” Journal of Leukocyte Biology, vol. 61, no. 6, pp. 736–744, 1997. View at Scopus
  32. J. Meng, P. Parroche, D. T. Golenbock, and C. J. McKnight, “The differential impact of disulfide bonds and N-linked glycosylation on the stability and function of CD14,” The Journal of Biological Chemistry, vol. 283, no. 6, pp. 3376–3384, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. S. Viriyakosol and T. N. Kirkland, “The N-terminal half of membrane CD14 is a functional cellular lipopolysaccharide receptor,” Infection and Immunity, vol. 64, no. 2, pp. 653–656, 1996.
  34. Z. Wu, L. Rothwell, T. Hu, and P. Kaiser, “Chicken CD14, unlike mammalian CD14, is trans-membrane rather than GPI-anchored,” Developmental and Comparative Immunology, vol. 33, no. 1, pp. 97–104, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. V. Bazil, V. Horejsi, and M. Baudys, “Biochemical characterization of a soluble form of the 53-kDa monocyte surface antigen,” European Journal of Immunology, vol. 16, no. 12, pp. 1583–1589, 1986.
  36. S. Viriyakosol and T. N. Kirkland, “A region of human CD14 required for lipopolysaccharide binding,” The Journal of Biological Chemistry, vol. 270, no. 1, pp. 361–368, 1995. View at Publisher · View at Google Scholar · View at Scopus
  37. T. La Cour, L. Kiemer, A. Mølgaard, R. Gupta, K. Skriver, and S. Brunak, “Analysis and prediction of leucine-rich nuclear export signals,” Protein Engineering, Design and Selection, vol. 17, no. 6, pp. 527–536, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. D. M. Glick, Ed., “Leucine scissors”. Glossary of Biochemistry and Molecular Biology, Portland Press, London, UK, Revised edition, 1977.
  39. W. H. Landschulz, P. F. Johnson, and S. L. McKnight, “The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins,” Science, vol. 240, no. 4860, pp. 1759–1764, 1988. View at Scopus
  40. T. Tanaka, Y. Kuroda, and S. Yokoyama, “Characteristics and prediction of domain linker sequences in multi-domain proteins,” Journal of Structural and Functional Genomics, vol. 4, no. 2-3, pp. 79–85, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. R. A. George and J. Heringa, “An analysis of protein domain linkers: their classification and role in protein folding,” Protein Engineering, vol. 15, no. 11, pp. 871–879, 2002. View at Scopus
  42. M. J. Paape, E. M. Lilius, P. A. Wiitanen, M. P. Kontio, and R. H. Miller, “Intramammary defense against infections induced by Escherichia coli in cows,” American Journal of Veterinary Research, vol. 57, no. 4, pp. 477–482, 1996. View at Scopus
  43. S. D. Wright, R. A. Ramos, A. Hermanowski-Vosatka, P. Rockwell, and P. A. Detmers, “Activation of the adhesive capacity of CR3 on neutrophils by endotoxin: dependence on lipopolysaccharide binding protein and CD14,” Journal of Experimental Medicine, vol. 173, no. 5, pp. 1281–1286, 1991. View at Scopus
  44. E. R. Chung, S. C. Shin, K. H. Shin, and K. Y. Chung, “SNP discovery in the leptin promoter gene and association with meat quality and carcass traits in Korean cattle,” Asian-Australasian Journal of Animal Sciences, vol. 21, no. 12, pp. 1689–1695, 2008. View at Scopus
  45. N. Dhiman, I. G. Ovsyannikova, R. A. Vierkant et al., “Associations between SNPs in toll-like receptors and related intracellular signaling molecules and immune responses to measles vaccine: preliminary results,” Vaccine, vol. 26, no. 14, pp. 1731–1736, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus