About this Journal Submit a Manuscript Table of Contents
Molecular Biology International
Volume 2011 (2011), Article ID 594529, 13 pages
http://dx.doi.org/10.4061/2011/594529
Review Article

Copper and Its Complexes in Medicine: A Biochemical Approach

1Department of Physics Chemistry & Materials Technology, Technological Educational Institute of Athens, 12210 Athens, Greece
2Biology Unit, Department of Pre-School Education, University of Thessaly, Argonafton and Filellinon Streets, Volos 38221, Greece

Received 27 February 2011; Accepted 10 April 2011

Academic Editor: Dimitrios Morikis

Copyright © 2011 Isidoros Iakovidis et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. J. Brewer, “The risks of copper toxicity contributing to cognitive decline in the aging population and to Alzheimer's disease,” Journal of the American College of Nutrition, vol. 28, no. 3, pp. 238–242, 2009. View at Scopus
  2. K. G. Daniel, P. Gupta, R. H. Harbach, W. C. Guida, and Q. P. Dou, “Organic copper complexes as a new class of proteasome inhibitors and apoptosis inducers in human cancer cells,” Biochemical Pharmacology, vol. 67, no. 6, pp. 1139–1151, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. S. Puig and D. J. Thiele, “Molecular mechanisms of copper uptake and distribution,” Current Opinion in Chemical Biology, vol. 6, no. 2, pp. 171–180, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Balamurugan and W. Schaffner, “Copper homeostasis in eukaryotes: teetering on a tightrope,” Biochimica et Biophysica Acta, vol. 1763, no. 7, pp. 737–746, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. M. Arredondo and M. T. Núñez, “Iron and copper metabolism,” Molecular Aspects of Medicine, vol. 26, no. 4-5, pp. 313–327, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. J. Y. Uriu-Adams and C. L. Keen, “Copper, oxidative stress, and human health,” Molecular Aspects of Medicine, vol. 26, no. 4-5, pp. 268–298, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. G. Crisponi, V. M. Nurchi, D. Fanni, C. Gerosa, S. Nemolato, and G. Faa, “Copper-related diseases: from chemistry to molecular pathology,” Coordination Chemistry Reviews, vol. 254, no. 7-8, pp. 876–889, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. J. E. Weder, C. T. Dillon, T. W. Hambley et al., “Copper complexes of non-steroidal anti-inflammatory drugs: an opportunity yet to be realized,” Coordination Chemistry Reviews, vol. 232, no. 1-2, pp. 95–126, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Gonzalez-Vilchez and R. Vilaplana, “29Cu chemotherapeutic copper compounds,” in Metallotherapeutic Drugs and Metal—Based Diagnostic Agents, M. Gielen and E. R. T. Tiekink, Eds., chapter 12, pp. 219–236, John Wiley & Sons, New York, NY, USA, 2005.
  10. F. Tisato, C. Marzano, M. Porchia, M. Pellei, and C. Santini, “Copper in diseases and treatments, and copper-based anticancer strategies,” Medicinal Research Reviews, vol. 30, no. 4, pp. 708–749, 2010.
  11. J. O. Noyce, H. Michels, and C. W. Keevil, “Inactivation of influenza A virus on copper versus stainless steel surfaces,” Applied and Environmental Microbiology, vol. 73, no. 8, pp. 2748–2750, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. F. Lebon, N. Boggetto, M. Ledecq et al., “Metal-organic compounds: a new approach for drug discovery: N1-(4-methyl-2-pyridyl)-2,3,6-trimethoxybenzamide copper(II) complex as an inhibitor of human immunodeficiency virus 1 protease,” Biochemical Pharmacology, vol. 63, no. 10, pp. 1863–1873, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Borkow and J. Gabbay, “Putting copper into action: copper-impregnated products with potent biocidal activities,” FASEB Journal, vol. 18, no. 14, pp. 1728–1730, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. A. Gaw, M. J. Murphy, and R. A. Cowan, “Copper,” in Clinical Biochemistry: An Illustrated Color Text, chapter 14, pp. 114–115, Churchill Livingstone, Philadelphia, Pa, USA, 2008.
  15. L. J. Harvey, G. Majsak-Newman, J. R. Dainty et al., “Adaptive responses in men fed low- and high- copper diets,” British Journal of Nutrition, vol. 90, no. 1, pp. 161–168, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Tapiero, D. M. Townsend, and K. D. Tew, “Trace elements in human physiology and pathology. Copper,” Biomedicine and Pharmacotherapy, vol. 57, no. 9, pp. 386–398, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Bonham, J. M. O'Connor, B. M. Hannigan, and J. J. Strain, “The immune system as a physiological indicator of marginal copper status?” British Journal of Nutrition, vol. 87, no. 5, pp. 393–403, 2002. View at Scopus
  18. L. M. Gaetke and C. K. Chow, “Copper toxicity, oxidative stress, and antioxidant nutrients,” Toxicology, vol. 189, no. 1-2, pp. 147–163, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. M. B. Kadiiska and R. P. Mason, “In vivo copper-mediated free radical production: an ESR spin-trapping study,” Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, vol. 58, no. 6, pp. 1227–1239, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. I. Delimaris, S. Georgopoulos, C. Kroupis et al., “Serum oxidizability, total antioxidant status and albumin serum levels in patients with aneurysmal or arterial occlusive disease,” Clinical Biochemistry, vol. 41, no. 9, pp. 706–711, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. P. Hedera, A. Peltier, J. K. Fink, S. Wilcock, Z. London, and G. J. Brewer, “Myelopolyneuropathy and pancytopenia due to copper deficiency and high zinc levels of unknown origin II. The denture cream is a primary source of excessive zinc,” NeuroToxicology, vol. 30, no. 6, pp. 996–999, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. C. A. Rouzer, “Metals and DNA repair,” Chemical Research in Toxicology, vol. 23, no. 3, pp. 1517–1518, 2010.
  23. I. Cecconi, A. Scaloni, G. Rastelli et al., “Oxidative modification of aldose reductase induced by copper ion. Definition of the metal-protein interaction mechanism,” Journal of Biological Chemistry, vol. 277, no. 44, pp. 42017–42027, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. Z. L. Harris, L. W. Klomp, and J. D. Gitlin, “Aceruloplasminemia: an inherited neurodegenerative disease with impairment of iron homeostasis,” American Journal of Clinical Nutrition, vol. 67, supplement 5, pp. 972S–977S, 1998. View at Scopus
  25. H. Miyajima, Y. Takahashi, and S. Kono, “Aceruloplasminemia, an inherited disorder of iron metabolism,” BioMetals, vol. 16, no. 1, pp. 205–213, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. G. J. Brewer, “Copper in medicine,” Current Opinion in Chemical Biology, vol. 7, no. 2, pp. 207–212, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. J. D. Gitlin, “Wilson Disease,” Gastroenterology, vol. 125, no. 6, pp. 1868–1877, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Müller, C. Langner, A. Fuchsbichler et al., “Immunohistochemical analysis of Mallory bodies in Wilsonian and non-Wilsonian hepatic copper toxicosis,” Hepatology, vol. 39, no. 4, pp. 963–969, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. G. J. Brewer and F. K. Askari, “Wilson's disease: clinical management and therapy,” Journal of Hepatology, vol. 42, supplement 1, pp. S13–S21, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. J. Tang, A. Donsante, V. Desai, N. Patronas, and S. G. Kaler, “Clinical outcomes in Menkes disease patients with a copper-responsive ATP7A mutation, G727R,” Molecular Genetics and Metabolism, vol. 95, no. 3, pp. 174–181, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. M. DiDonato and B. Sarkar, “Copper transport and its alterations in Menkes and Wilson diseases,” Biochimica et Biophysica Acta, vol. 1360, no. 1, pp. 3–16, 1997. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Basun, L. G. Forssell, L. Wetterberg, and B. Winblad, “Metals and trace elements in plasma and cerebrospinal fluid in normal aging and Alzheimer's disease,” Journal of Neural Transmission—Parkinson's Disease & Dementia Section, vol. 3, no. 4, pp. 231–258, 1991. View at Scopus
  33. D. L. Sparks and B. G. Schreurs, “Trace amounts of copper in water induce β-amyloid plaques and learning deficits in a rabbit model of Alzheimer's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 19, pp. 11065–11069, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. M. C. Morris, D. A. Evans, C. C. Tangney et al., “Dietary copper and high saturated and trans fat intakes associated with cognitive decline,” Archives of Neurology, vol. 63, no. 8, pp. 1085–1088, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. F. Haeffner, D. G. Smith, K. J. Barnham, and A. I. Bush, “Model studies of cholesterol and ascorbate oxidation by copper complexes: relevance to Alzheimer's disease β-amyloid metallochemistry,” Journal of Inorganic Biochemistry, vol. 99, no. 12, pp. 2403–2422, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. C. Hureau and P. Faller, “Aβ-mediated ROS production by Cu ions: structural insights, mechanisms and relevance to Alzheimer's disease,” Biochimie, vol. 91, no. 10, pp. 1212–1217, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. S. Rivera-Mancía, I. Pérez-Neri, C. Ríos, L. Tristán-López, L. Rivera-Espinosa, and S. Montes, “The transition metals copper and iron in neurodegenerative diseases,” Chemico-Biological Interactions, vol. 186, no. 2, pp. 184–199, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. E. House, M. Mold, J. Collingwood, A. Baldwin, S. Goodwin, and C. Exley, “Copper abolishes the β-sheet secondary structure of preformed amyloid fibrils of amyloid-β42,” Journal of Alzheimer's Disease, vol. 18, no. 4, pp. 811–817, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. M. A. Cater, K. T. McInnes, Q. X. Li et al., “Intracellular copper deficiency increases amyloid-β secretion by diverse mechanisms,” Biochemical Journal, vol. 412, no. 1, pp. 141–152, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. A. J. Lewis, “The role of copper in inflammatory disorders,” Agents and Actions, vol. 15, no. 5-6, pp. 513–519, 1984. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Soylak and M. Kirnap, “Serum copper and zinc concentrations of patients with rheumatoid arthritis from Kayseri-Turkey,” Fresenius Environmental Bulletin, vol. 10, no. 4, pp. 409–410, 2001. View at Scopus
  42. A. Zoli, L. Altomonte, R. Caricchio, et al., “Serum zinc and copper in active rheumatoid arthritis: correlation with interleukin 1 beta and tumor necrosis factor alpha,” Clinical Rheumatology, vol. 17, no. 5, pp. 378–382, 1998.
  43. M. O. Louro, J. A. Cocho, A. Mera, and J. C. Tutor, “Immunochemical and enzymatic study of ceruloplasmin in rheumatoid arthritis,” Journal of Trace Elements in Medicine and Biology, vol. 14, no. 3, pp. 174–178, 2000. View at Scopus
  44. A. Gupte and R. J. Mumper, “Elevated copper and oxidative stress in cancer cells as a target for cancer treatment,” Cancer Treatment Reviews, vol. 35, no. 1, pp. 32–46, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. V. L. Goodman, G. J. Brewer, and S. D. Merajver, “Copper deficiency as an anti-cancer strategy,” Endocrine-Related Cancer, vol. 11, no. 2, pp. 255–263, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. L. J. Harvey and H. J. McArdle, “Biomarkers of copper status: a brief update,” British Journal of Nutrition, vol. 99, supplement 3, pp. S10–S13, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. N. Arnal, D. O. Cristalli, M. J. de Alaniz, and C. A. Marra, “Clinical utility of copper, ceruloplasmin, and metallothionein plasma determinations in human neurodegenerative patients and their first-degree relatives,” Brain Research, vol. 1319, no. 1, pp. 118–130, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. G. A. McMillin, J. J. Travis, and J. W. Hunt, “Direct measurement of free copper in serum or plasma ultrafiltrate,” American Journal of Clinical Pathology, vol. 131, no. 2, pp. 160–165, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. D. B. Milne, “Assessment of copper nutritional status,” Clinical Chemistry, vol. 40, no. 8, pp. 1479–1484, 1994. View at Scopus
  50. D. B. Milne and P. E. Johnson, “Assessment of copper status: effect of age and gender on reference ranges in healthy adults,” Clinical Chemistry, vol. 39, no. 5, pp. 883–887, 1993. View at Scopus
  51. C. Muñoz, M. López, M. Olivares, F. Pizarro, M. Arredondo, and M. Araya, “Differential response of interleukin-2 production to chronic copper supplementation in healthy humans,” European Cytokine Network, vol. 16, no. 4, pp. 261–265, 2005. View at Scopus
  52. S. G. Kaler, C. S. Holmes, D. S. Goldstein et al., “Neonatal diagnosis and treatment of Menkes disease,” New England Journal of Medicine, vol. 358, no. 6, pp. 605–614, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. N. J. Deng, L. Yan, D. Singh, and P. Cieplak, “Molecular basis for the Cu2+ binding-induced destabilization of β2-microglobulin revealed by molecular dynamics simulation,” Biophysical Journal, vol. 90, no. 11, pp. 3865–3879, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. M. Iskandar, E. Swist, K. D. Trick, B. Wang, M. R. L'Abbé, and J. Bertinato, “Copper chaperone for Cu/Zn superoxide dismutase is a sensitive biomarker of mild copper deficiency induced by moderately high intakes of zinc,” Nutrition Journal, vol. 4, no. 35, Article ID 35, pp. 35–44, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. M. N. Patel, P. A. Parmar, and D. S. Gandhi, “Square pyramidal copper(II) complexes with forth generation fluoroquinolone and neutral bidentate ligand: structure, antibacterial, SOD mimic and DNA-interaction studies,” Bioorganic and Medicinal Chemistry, vol. 18, no. 3, pp. 1227–1235, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. L. Tripathi, P. Kumar, and A. K. Singhai, “Role of chelates in treatment of cancer,” Indian Journal of Cancer, vol. 44, no. 2, pp. 62–71, 2007. View at Scopus
  57. H. Elo, “The antiproliferative agents trans-bis(resorcylaldoximato)copper(II) and trans-bis(2,3,4-trihydroxybenzaldoximato)copper(II) and cytopathic effects of HIV,” Zeitschrift für Naturforschung, vol. 59, no. 7-8, pp. 609–611, 2004. View at Scopus
  58. D. Jayaraju and A. K. Kondapi, “Anti-cancer copper salicylaldoxime complex inhibits topoisomerase II catalytic activity,” Current Science, vol. 81, no. 7, pp. 787–792, 2001. View at Scopus
  59. H. Y. Shrivastava, M. Kanthimathi, and B. U. Nair, “Copper(II) complex of a tridentate ligand: an artificial metalloprotease for bovine serum albumin,” Biochimica et Biophysica Acta, vol. 1573, no. 2, pp. 149–155, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. N. H. Gokhale, S. S. Padhye, S. B. Padhye, C. E. Anson, and A. K. Powell, “Copper complexes of carboxamidrazone derivatives as anticancer agents. 3. Synthesis, characterization and crystal structure of [Cu(appc)Cl 2], (appc=N1-(2- acetylpyridine)pyridine-2- carboxamidrazone),” Inorganica Chimica Acta, vol. 319, no. 1-2, pp. 90–94, 2001. View at Publisher · View at Google Scholar · View at Scopus
  61. Z. Trávníček, M. Malon, Z. Šindelář et al., “Preparation, physicochemical properties and biological activity of copper(II) complexes with 6-(2-chlorobenzylamino) purine (HL1) or 6-(3-chlorobenzylamino) purine (HL2).The single-crystal X-ray structure of [Cu(H+L2)Cl3]Cl.2H2O,” Journal of Inorganic Biochemistry, vol. 84, no. 1-2, pp. 23–32, 2001. View at Publisher · View at Google Scholar · View at Scopus
  62. S. Sharma, F. Athar, M. R. Maurya, and A. Azam, “Copper (II) complexes with substituted thiosemicarbazones of thiophene-2-carboxaldehyde: synthesis, characterization and antiamoebic activity against E. histolytica,” European Journal of Medicinal Chemistry, vol. 40, no. 12, pp. 1414–1419, 2005. View at Publisher · View at Google Scholar · View at PubMed
  63. A. Pérez-Rebolledo, L. R. Teixeira, A. A. Batista et al., “4-Nitroacetophenone-derived thiosemicarbazones and their copper(II) complexes with significant in vitro anti-trypanosomal activity,” European Journal of Medicinal Chemistry, vol. 43, no. 5, pp. 939–948, 2008. View at Publisher · View at Google Scholar · View at PubMed
  64. S. S. Hindo, M. Frezza, D. Tomco et al., “Metals in anticancer therapy: copper(II) complexes as inhibitors of the 20S proteasome,” European Journal of Medicinal Chemistry, vol. 44, no. 11, pp. 4353–4361, 2009. View at Publisher · View at Google Scholar · View at PubMed
  65. V. Milacic, D. Chen, L. Giovagnini, A. Diez, D. Fregona, and Q. P. Dou, “Pyrrolidine dithiocarbamate-zinc(II) and -copper(II) complexes induce apoptosis in tumor cells by inhibiting the proteasomal activity,” Toxicology and Applied Pharmacology, vol. 231, no. 1, pp. 24–33, 2008. View at Publisher · View at Google Scholar · View at PubMed
  66. N. Jiménez-Garrido, L. Perelló, R. Ortiz et al., “Antibacterial studies, DNA oxidative cleavage, and crystal structures of Cu(II) and Co(II) complexes with two quinolone family members, ciprofloxacin and enoxacin,” Journal of Inorganic Biochemistry, vol. 99, no. 3, pp. 677–689, 2005. View at Publisher · View at Google Scholar · View at PubMed
  67. Z. H. Chohan, H. A. Shad, M. H. Youssoufi, and B. T. Hadda, “Some new biologically active metal-based sulfonamide,” European Journal of Medicinal Chemistry, vol. 45, no. 7, pp. 2893–2901, 2010. View at Publisher · View at Google Scholar · View at PubMed
  68. P. Zatta and A. Frank, “Copper deficiency and neurological disorders in man and animals,” Brain Research Reviews, vol. 54, no. 1, pp. 19–33, 2007. View at Publisher · View at Google Scholar · View at PubMed
  69. M. Porchia, F. Benetollo, F. Refosco, F. Tisato, C. Marzano, and V. Gandin, “Synthesis and structural characterization of copper(I) complexes bearing N-methyl-1,3,5-triaza-7-phosphaadamantane (mPTA). Cytotoxic activity evaluation of a series of water soluble Cu(I) derivatives containing PTA, PTAH and mPTA ligands,” Journal of Inorganic Biochemistry, vol. 103, no. 12, pp. 1644–1651, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. A. Marín-Hernández, I. Gracia-Mora, L. Ruiz-Ramírez, and R. Moreno-Sánchez, “Toxic effects of copper-based antineoplastic drugs (Casiopeinas®) on mitochondrial functions,” Biochemical Pharmacology, vol. 65, no. 12, pp. 1979–1989, 2003. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Barceló-Oliver, A. García-Raso, A. Terrón et al., “Synthesis and mass spectroscopy kinetics of a novel ternary copper(II) complex with cytotoxic activity against cancer cells,” Journal of Inorganic Biochemistry, vol. 101, no. 4, pp. 649–659, 2007. View at Publisher · View at Google Scholar · View at PubMed
  72. A. TH. Chaviara, P. C. Christidis, A. Papageorgiou, E. Chrysogelou, D. J. Hadjipavlou-Litina, and C. A. Bolos, “In vivo anticancer, anti- inflammatory, and toxicity studies of mixed-ligand Cu(II) complexes of dien and its Schiff dibases with heterocyclic aldehydes and 2-amino-2-thiazoline. Crystal structure of [Cu(dien)(Br)(2a- 2tzn)](Br)(H2O),” Journal of Inorganic Biochemistry, vol. 99, no. 11, pp. 2102–2109, 2005. View at Publisher · View at Google Scholar · View at PubMed
  73. G. Psomas, A. Tarushi, E. K. Efthimiadou, Y. Sanakis, C. P. Raptopoulou, and N. Katsaros, “Synthesis, structure and biological activity of copper(II) complexes with oxolinic acid,” Journal of Inorganic Biochemistry, vol. 100, no. 11, pp. 1764–1773, 2006. View at Publisher · View at Google Scholar · View at PubMed
  74. E. K. Efthimiadou, H. Thomadaki, Y. Sanakis et al., “Structure and biological properties of the copper(II) complex with the quinolone antibacterial drug N-propyl-norfloxacin and 2,2′-bipyridine,” Journal of Inorganic Biochemistry, vol. 101, no. 1, pp. 64–73, 2007. View at Publisher · View at Google Scholar · View at PubMed
  75. M. E. Katsarou, E. K. Efthimiadou, G. Psomas, A. Karaliota, and D. Vourloumis, “Novel copper(II) complex of N-propyl-norfloxacin and 1,10-phenanthroline with enhanced antileukemic and DNA nuclease activities,” Journal of Medicinal Chemistry, vol. 51, no. 3, pp. 470–478, 2008. View at Publisher · View at Google Scholar · View at PubMed
  76. E. K. Efthimiadou, M. E. Katsarou, A. Karaliota, and G. Psomas, “Copper(II) complexes with sparfloxacin and nitrogen-donor heterocyclic ligands: structure-activity relationship,” Journal of Inorganic Biochemistry, vol. 102, no. 4, pp. 910–920, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. G. J. Chen, X. Qiao, P.Q. Qiao, et al., “Synthesis, DNA binding, photo-induced DNA cleavage, cytotoxicity and apoptosis studies of copper(II) complexes,” Journal of Inorganic Biochemistry, vol. 105, no. 2, pp. 119–126, 2011.
  78. A. Rivero-Müller, A. De Vizcaya-Ruiz, N. Plant, L. Ruiz, and M. Dobrota, “Mixed chelate copper complex, Casiopeina IIgly, binds and degrades nucleic acids: a mechanism of cytotoxicity,” Chemico-Biological Interactions, vol. 165, no. 3, pp. 189–199, 2007. View at Publisher · View at Google Scholar · View at PubMed
  79. C. Marzano, M. Pellei, S. Alidori et al., “New copper(I) phosphane complexes of dihydridobis(3-nitro-1,2,4-triazolyl)borate ligand showing cytotoxic activity,” Journal of Inorganic Biochemistry, vol. 100, no. 2, pp. 299–304, 2006. View at Publisher · View at Google Scholar · View at PubMed
  80. P. Štarha, Z. Trávníček, R. Herchel, I. Popa, P. Suchý, and J. Vančo, “Dinuclear copper(II) complexes containing 6-(benzylamino)purines as bridging ligands: synthesis, characterization, and in vitro and in vivo antioxidant activities,” Journal of Inorganic Biochemistry, vol. 103, no. 3, pp. 432–440, 2009. View at Publisher · View at Google Scholar · View at PubMed
  81. T. Fukuuchi, K. Doh-ura, S. Yoshihara, and S. Ohta, “Metal complexes with superoxide dismutase-like activity as candidates for anti-prion drug,” Bioorganic and Medicinal Chemistry Letters, vol. 16, no. 23, pp. 5982–5987, 2006. View at Publisher · View at Google Scholar · View at PubMed
  82. D. Chen, F. Peng, Q. C. Cui et al., “Inhibition of prostate cancer cellular proteasome activity by a pyrrolidine dithiocarbamate-copper complex is associated with suppression of proliferation and induction of apoptosis,” Frontiers in Bioscience, vol. 10, no. 15, pp. 2932–2939, 2005.
  83. G. Mohan and R. Nagar, “Synthesis and anti-inflammatory activity of N- pyridinobenzamide-2-carboxylic acid and its metal chelates,” Indian Journal of Pharmacology, vol. 24, no. 4, pp. 207–211, 1992.
  84. A. Andrade, S. F. Namora, R. G. Woisky et al., “Synthesis and characterization of a diruthenium-ibuprofenato complex comparing its anti-inflammatory activity with that of a copper(II)-ibuprofenato complex,” Journal of Inorganic Biochemistry, vol. 81, no. 1-2, pp. 23–27, 2000. View at Publisher · View at Google Scholar
  85. D. D. Li, J. L. Tian, W. Gu, X. Liu, H. H. Zeng, and S. P. Yan, “DNA bindingoxidative DNA cleavage, cytotoxicity, and apoptosis-inducing activity of copper(II) complexes with 1,4-tpbd (N,N,N',N'-tetrakis(2-yridylmethyl)benzene-1,4-diamine) ligand,” Journal of Inorganic Biochemistry, vol. 105, no. 6, pp. 894–901, 2011.
  86. X. Qiao, Z. Y. Ma, C. Z. Xie, et al., “Study on potential antitumor mechanism of a novel Schiff Base copper(II) complex: synthesis, crystal structure, DNA binding, cytotoxicity and apoptosis induction activity,” Journal of Inorganic Biochemistry, vol. 105, no. 5, pp. 728–737, 2011.
  87. J. Dong, L. Li, G. Liu, T. Xu, and D. Wang, “Synthesis, crystal structure and DNA- binding properties of a new copper(II) complex with L-valine Schiff base and 1,10- phenanthroline,” Journal of Molecular Structure, vol. 986, no. 1–3, pp. 57–63, 2011.
  88. C. N. Hancock, L. H. Stockwin, B. Han, et al., “A copper chelate of thiosemicarbazone NSC 689534 induces oxidative/ER stress andinhibits tumor growth in vitro and in vivo,” Free Radical Biology & Medicine, vol. 50, no. 1, pp. 110–121, 2011.
  89. Y. Wang, X. Zhang, Q. Zhang, and Z. Yang, “Oxidative damage to DNA by 1,10-phenanthroline/L-threonine copper (II) complexes with chlorogenic acid,” BioMetals, vol. 23, no. 2, pp. 265–273, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus