About this Journal Submit a Manuscript Table of Contents
Molecular Biology International
Volume 2011 (2011), Article ID 839872, 8 pages
http://dx.doi.org/10.4061/2011/839872
Review Article

The Role of miRNAs as Key Regulators in the Neoplastic Microenvironment

1Biological, Chemical and Physical Sciences Department, College of Arts and Sciences, Roosevelt University, Chicago, IL 60605, USA
2Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA

Received 21 December 2010; Accepted 6 February 2011

Academic Editor: Alessandro Desideri

Copyright © 2011 K. K. Wentz-Hunter and J. A. Potashkin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Hanahan and R. A. Weinberg, “The hallmarks of cancer,” Cell, vol. 100, no. 1, pp. 57–70, 2000. View at Scopus
  2. S. S. McAllister and R. A. Weinberg, “Tumor-host interactions: a far-reaching relationship,” Journal of Clinical Oncology, vol. 28, no. 26, pp. 4022–4028, 2010. View at Publisher · View at Google Scholar · View at PubMed
  3. A. J. Giaccia and E. Schipani, “Role of carcinoma-associated fibroblasts and hypoxia in tumor progression,” Current Topics in Microbiology and Immunology, vol. 345, pp. 31–45, 2010.
  4. R. M. Bremnes, T. Dønnem, S. Al-Saad et al., “The role of tumor stroma in cancer progression and prognosis: emphasis on carcinoma-associated fibroblasts and non-small cell lung cancer,” Journal of Thoracic Oncology, vol. 6, no. 1, pp. 209–217, 2011. View at Publisher · View at Google Scholar · View at PubMed
  5. F. Moinfar, Y. G. Man, G. L. Bratthauer, M. Ratschek, and F. A. Tavassoli, “Genetic abnormalities in mammary ductal intraepithelial neoplasia-flat type (“clinging ductal carcinoma in situ”): a simulator of normal mammary epithelium,” Cancer, vol. 88, no. 9, pp. 2072–2081, 2000. View at Scopus
  6. K. Kurose, K. Gilley, S. Matsumoto, P. H. Watson, X. P. Zhou, and C. Eng, “Frequent somatic mutations in PTEN and TP53 are mutually exclusive in the stroma of breast carcinomas,” Nature Genetics, vol. 32, no. 3, pp. 355–357, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. K. Fukino, L. Shen, S. Matsumoto, C. D. Morrison, G. L. Mutter, and C. Eng, “Combined total genome loss of heterozygosity scan of breast cancer stroma and epithelium reveals multiplicity of stromal targets,” Cancer Research, vol. 64, no. 20, pp. 7231–7236, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. R. Hill, Y. Song, R. D. Cardiff, and T. Van Dyke, “Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis,” Cell, vol. 123, no. 6, pp. 1001–1011, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. M. Allinen, R. Beroukhim, LI. Cai et al., “Molecular characterization of the tumor microenvironment in breast cancer,” Cancer Cell, vol. 6, no. 1, pp. 17–32, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. W. Qiu, M. Hu, A. Sridhar et al., “No evidence of clonal somatic genetic alterations in cancer-associated fibroblasts from human breast and ovarian carcinomas,” Nature Genetics, vol. 40, no. 5, pp. 650–655, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. A. Enkelmann, J. Heinzelmann, F. von Eggeling, et al., “Specific protein and miRNA patterns characterise tumour-associated fibroblasts in bladder cancer,” Journal of Cancer Research and Clinical Oncology. In press.
  12. T. Schepeler, J. T. Reinert, M. S. Ostenfeld et al., “Diagnostic and prognostic microRNAs in stage II colon cancer,” Cancer Research, vol. 68, no. 15, pp. 6416–6424, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. K. H. Lee, C. Lotterman, C. Karikari et al., “Epigenetic silencing of microRNA miR-107 regulates cyclin-dependent kinase 6 expression in pancreatic cancer,” Pancreatology, vol. 9, no. 3, pp. 293–301, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. D. G. Schaar, D. J. Medina, D. F. Moore, R. K. Strair, and YI. Ting, “miR-320 targets transferrin receptor 1 (CD71) and inhibits cell proliferation,” Experimental Hematology, vol. 37, no. 2, pp. 245–255, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. T. Ichimi, H. Enokida, Y. Okuno et al., “Identification of novel microRNA targets based on microRNA signatures in bladder cancer,” International Journal of Cancer, vol. 125, no. 2, pp. 345–352, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. T. Chiyomaru, H. Enokida, S. Tatarano et al., “MiR-145 and miR-133a function as tumour suppressors and directly regulate FSCN1 expression in bladder cancer,” British Journal of Cancer, vol. 102, no. 5, pp. 883–891, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. M. S. Ostenfeld, J. B. Bramsen, P. Lamy et al., “MiR-145 induces caspase-dependent and-independent cell death in urothelial cancer cell lines with targeting of an expression signature present in Ta bladder tumors,” Oncogene, vol. 29, no. 7, pp. 1073–1084, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. O. Aprelikova, X. Yu, J. Palla et al., “The role of miR-31 and its target gene SATB2 in cancer-associated fibroblasts,” Cell Cycle, vol. 9, no. 21, pp. 4387–4398, 2010. View at Publisher · View at Google Scholar
  19. E. Bandrés, E. Cubedo, X. Agirre et al., “Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues,” Molecular Cancer, vol. 5, article 29, 2006. View at Publisher · View at Google Scholar · View at PubMed
  20. O. Slaby, M. Svoboda, P. Fabian et al., “Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer,” Oncology, vol. 72, no. 5-6, pp. 397–402, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. K. Motoyama, H. Inoube, Y. Takatsuno et al., “Over- and under-expressed microRNAs in human colorectal cancer,” International Journal of Oncology, vol. 34, no. 4, pp. 1069–1075, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. C. J. Wang, Z. G. Zhou, L. Wang et al., “Clinicopathological significance of microRNA-31, -143 and -145 expression in colorectal cancer,” Disease Markers, vol. 26, no. 1, pp. 27–34, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. T. S. Wong, X. B. Liu, B. Y. H. Wong, R. W. M. Ng, A. P. W. Yuen, and W. I. Wei, “Mature miR-184 as potential oncogenic microRNA of squamous cell carcinoma of tongue,” Clinical Cancer Research, vol. 14, no. 9, pp. 2588–2592, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. LI. X. Yan, X. F. Huang, Q. Shao et al., “MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis,” RNA, vol. 14, no. 11, pp. 2348–2360, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. S. Valastyan, F. Reinhardt, N. Benaich et al., “A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis,” Cell, vol. 137, no. 6, pp. 1032–1046, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. J. Guo, Y. Miao, B. Xiao et al., “Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues,” Journal of Gastroenterology and Hepatology, vol. 24, no. 4, pp. 652–657, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. S. Veerla, D. Lindgren, A. Kvist et al., “MiRNA expression in urothelial carcinomas: important roles of miR-10a, miR-222, miR-125b, miR-7 and miR-452 for tumor stage and metastasis, and frequent homozygous losses of miR-31,” International Journal of Cancer, vol. 124, no. 9, pp. 2236–2242, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. V. Benes and M. Castoldi, “Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available,” Methods, vol. 50, no. 4, pp. 244–249, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. B. D'haene, J. O. Vandesompele, and J. Hellemans, “Accurate and objective copy number profiling using real-time quantitative PCR,” Methods, vol. 50, no. 4, pp. 262–270, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. Z. Yu, N. E. Willmarth, J. Zhou et al., “microRNA 17/20 inhibits cellular invasion and tumor metastasis in breast cancer by heterotypic signaling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 18, pp. 8231–8236, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. T. A. Hembrough, K. R. Kralovich, L. Li, and S. L. Gonias, “Cytokeratin 8 released by breast carcinoma cells in vitro binds plasminogen and tissue-type plasminogen activator and promotes plasminogen activation,” Biochemical Journal, vol. 317, no. 3, pp. 763–769, 1996. View at Scopus
  32. M. Wygrecka, L. M. Marsh, R. E. Morty et al., “Enolase-1 promotes plasminogen-mediated recruitment of monocytes to the acutely inflamed lung,” Blood, vol. 113, no. 22, pp. 5588–5598, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. K. Dass, A. Ahmad, A. S. Azmi, S. H. Sarkar, and F. H. Sarkar, “Evolving role of uPA/uPAR system in human cancers,” Cancer Treatment Reviews, vol. 34, no. 2, pp. 122–136, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. A. L. Harris, “Hypoxia—a key regulatory factor in tumour growth,” Nature Reviews Cancer, vol. 2, no. 1, pp. 38–47, 2002. View at Scopus
  35. B. Qian, D. Katsaros, L. Lu et al., “High miR-21 expression in breast cancer associated with poor disease-free survival in early stage disease and high TGF-β1,” Breast Cancer Research and Treatment, vol. 117, no. 1, pp. 131–140, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. F. M. Selaru, A. V. Olaru, T. Kan et al., “MicroRNA-21 is overexpressed in human cholangiocarcinoma and regulates programmed cell death 4 and tissue inhibitor of metalloproteinase 3,” Hepatology, vol. 49, no. 5, pp. 1595–1601, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. B. Song, C. Wang, J. Liu et al., “MicroRNA-21 regulates breast cancer invasion partly by targeting tissue inhibitor of metalloproteinase 3 expression,” Journal of Experimental and Clinical Cancer Research, vol. 29, no. 1, article 29, 2010. View at Publisher · View at Google Scholar · View at PubMed
  38. G. Gabriely, T. Wurdinger, S. Kesari et al., “MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators,” Molecular and Cellular Biology, vol. 28, no. 17, pp. 5369–5380, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. H. Xia, Y. Qi, S. S. Ng et al., “microRNA-146b inhibits glioma cell migration and invasion by targeting MMPs,” Brain Research, vol. 1269, no. C, pp. 158–165, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. S. Sengupta, J. A. Den Boon, I. H. Chen et al., “MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 15, pp. 5874–5878, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. S. Ramaswamy, K. N. Ross, E. S. Lander, and T. R. Golub, “A molecular signature of metastasis in primary solid tumors,” Nature Genetics, vol. 33, no. 1, pp. 49–54, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. R. Kulshreshtha, M. Ferracin, S. E. Wojcik et al., “A microRNA signature of hypoxia,” Molecular and Cellular Biology, vol. 27, no. 5, pp. 1859–1867, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. Z. Hua, Q. Lv, W. Ye et al., “Mirna-directed regulation of VEGF and other angiogenic under hypoxia,” PLoS ONE, vol. 1, no. 1, article e116, 2006. View at Publisher · View at Google Scholar · View at PubMed
  44. C. Hebert, K. Norris, M. A. Scheper, N. Nikitakis, and J. J. Sauk, “High mobility group A2 is a target for miRNA-98 in head and neck squamous cell carcinoma,” Molecular Cancer, vol. 6, article 5, 2007. View at Publisher · View at Google Scholar · View at PubMed
  45. R. B. Donker, J. F. Mouillet, D. M. Nelson, and Y. Sadovsky, “The expression of Argonaute2 and related microRNA biogenesis proteins in normal and hypoxic trophoblasts,” Molecular Human Reproduction, vol. 13, no. 4, pp. 273–279, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. R. Kulshreshtha, M. Ferracin, M. Negrini, G. A. Calin, R. V. Davuluri, and M. Ivan, “Regulation of microRNA expression: the hypoxic component,” Cell Cycle, vol. 6, no. 12, pp. 1426–1431, 2007. View at Scopus
  47. L. Oliver, C. Olivier, F. B. Marhuenda, M. Campone, and F. M. Vallette, “Hypoxia and the malignant glioma microenvironment: regulation and implications for therapy,” Current Molecular Pharmacology, vol. 2, no. 3, pp. 263–284, 2009. View at Publisher · View at Google Scholar
  48. B. Kaur, F. W. Khwaja, E. A. Severson, S. L. Matheny, D. J. Brat, and E. G. Van Meir, “Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis,” Neuro-Oncology, vol. 7, no. 2, pp. 134–153, 2005. View at Publisher · View at Google Scholar · View at PubMed
  49. J. A. Chan, A. M. Krichevsky, and K. S. Kosik, “MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells,” Cancer Research, vol. 65, no. 14, pp. 6029–6033, 2005. View at Publisher · View at Google Scholar · View at PubMed
  50. M. Yamakuchi, C. D. Lotterman, C. Bao et al., “P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 14, pp. 6334–6339, 2010. View at Publisher · View at Google Scholar · View at PubMed
  51. S. Cascio, A. D'Andrea, R. Ferla et al., “miR-20b modulates VEGF expression by targeting HIF-1α and STAT3 in MCF-7 breast cancer cells,” Journal of Cellular Physiology, vol. 224, no. 1, pp. 242–249, 2010. View at Publisher · View at Google Scholar · View at PubMed
  52. Z. Lei, BO. Li, Z. Yang et al., “Regulation of HIF-1α and VEGF by miR-20b tunes tumor cells to adapt to the alteration of oxygen concentration,” PLoS ONE, vol. 4, no. 10, Article ID e7629, 2009. View at Publisher · View at Google Scholar · View at PubMed
  53. L. K. Mathew and M. C. Simon, “mir-210: a sensor for hypoxic stress during tumorigenesis,” Molecular Cell, vol. 35, no. 6, pp. 737–738, 2009. View at Publisher · View at Google Scholar · View at PubMed
  54. M. E. Crosby, R. Kulshreshtha, M. Ivan, and P. M. Glazer, “MicroRNA regulation of DNA repair gene expression in hypoxic stress,” Cancer Research, vol. 69, no. 3, pp. 1221–1229, 2009. View at Publisher · View at Google Scholar · View at PubMed
  55. M.-P. Puisségur, N. M. Mazure, T. Bertero et al., “MiR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity,” Cell Death and Differentiation, vol. 18, no. 3, pp. 465–478, 2011. View at Publisher · View at Google Scholar · View at PubMed
  56. Z. Chen, Y. Li, H. Zhang, P. Huang, and R. Luthra, “Hypoxia-regulated microRNA-210 modulates mitochondrial function and decreases ISCU and COX10 expression,” Oncogene, vol. 29, pp. 4362–4368, 2010. View at Publisher · View at Google Scholar · View at PubMed
  57. X. Huang, L. Ding, K. L. Bennewith et al., “Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation,” Molecular Cell, vol. 35, no. 6, pp. 856–867, 2009. View at Publisher · View at Google Scholar · View at PubMed
  58. A. S. Ho, X. Huang, H. Cao et al., “Circulating miR-210 as a novel hypoxia marker in pancreatic cancer,” Translational Oncology, vol. 3, no. 2, pp. 109–113, 2010. View at Publisher · View at Google Scholar
  59. H. E. Gee, C. Camps, F. M. Buffa et al., “hsa-mir-210 is a marker of tumor hypoxia and a prognostic factor in head and neck cancer,” Cancer, vol. 116, no. 9, pp. 2148–2158, 2010. View at Publisher · View at Google Scholar · View at PubMed
  60. C. S. Neal, M. Z. Michael, L. H. Rawlings, M. B. Van der Hoek, and J. M. Gleadle, “The VHL-dependent regulation of microRNAs in renal cancer,” BMC Medicine, vol. 8, article 64, 2010. View at Publisher · View at Google Scholar · View at PubMed
  61. J. D. Gordan and M. C. Simon, “Hypoxia-inducible factors: central regulators of the tumor phenotype,” Current Opinion in Genetics and Development, vol. 17, no. 1, pp. 71–77, 2007. View at Publisher · View at Google Scholar · View at PubMed
  62. E. Louie, S. Nik, J.-S. Chen et al., “Identification of a stem-like cell population by exposing metastatic breast cancer cell lines to repetitive cycles of hypoxia and reoxygenation,” Breast Cancer Research, vol. 12, no. 6, article R94, 2010. View at Publisher · View at Google Scholar · View at PubMed
  63. Y. Shimono, M. Zabala, R. W. Cho et al., “Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells,” Cell, vol. 138, no. 3, pp. 592–603, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. BO. Wang, M. Herman-Edelstein, P. Koh et al., “E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-β,” Diabetes, vol. 59, no. 7, pp. 1794–1802, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. Y. Xiong, J. H. Fang, J. P. Yun et al., “Effects of microrna-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma,” Hepatology, vol. 51, no. 3, pp. 836–845, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. J. Krol, I. Loedige, and W. Filipowicz, “The widespread regulation of microRNA biogenesis, function and decay,” Nature Reviews Genetics, vol. 11, no. 9, pp. 597–610, 2010. View at Publisher · View at Google Scholar · View at PubMed
  67. H. Siomi and M. C. Siomi, “Posttranscriptional regulation of microRNA biogenesis in animals,” Molecular Cell, vol. 38, no. 3, pp. 323–332, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. H. I. Suzuki and K. Miyazono, “Dynamics of microRNA biogenesis: crosstalk between p53 network and microRNA processing pathway,” Journal of Molecular Medicine, vol. 88, pp. 1085–1094, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. B. N. Davis-Dusenbery and A. Hata, “Mechanisms of control of microRNA biogenesis,” Journal of Biochemistry, vol. 148, no. 4, pp. 381–392, 2010. View at Publisher · View at Google Scholar · View at PubMed
  70. M. A. Newman and S. M. Hammond, “Emerging paradigms of regulated microRNA processing,” Genes and Development, vol. 24, no. 11, pp. 1086–1092, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. Y. Lee, M. Kim, J. Han et al., “MicroRNA genes are transcribed by RNA polymerase II,” EMBO Journal, vol. 23, no. 20, pp. 4051–4060, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. G. M. Borchert, W. Lanier, and B. L. Davidson, “RNA polymerase III transcribes human microRNAs,” Nature Structural and Molecular Biology, vol. 13, no. 12, pp. 1097–1101, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus