About this Journal Submit a Manuscript Table of Contents
Molecular Biology International
Volume 2012 (2012), Article ID 153415, 10 pages
http://dx.doi.org/10.1155/2012/153415
Review Article

TRIM22: A Diverse and Dynamic Antiviral Protein

Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON, Canada N6A 5C1

Received 9 January 2012; Accepted 24 February 2012

Academic Editor: Abraham Brass

Copyright © 2012 Clayton J. Hattlmann et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Han, D. I. Lou, and S. L. Sawyer, “Identification of a genomic reservoir for new TRIM genes in primate genomes,” PLoS Genetics, vol. 7, no. 12, Article ID e1002388, 2011. View at Publisher · View at Google Scholar
  2. R. Rajsbaum, J. P. Stoye, and A. O'Garra, “Type I interferon-dependent and -independent expression of tripartite motif proteins in immune cells,” European Journal of Immunology, vol. 38, no. 3, pp. 619–630, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Carthagena, A. Bergamaschi, J. M. Luna et al., “Human TRIM gene expression in response to interferons,” Plos one, vol. 4, no. 3, Article ID e4894, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Hatakeyama, “TRIM proteins and cancer,” Nature Reviews Cancer, vol. 11, pp. 792–804, 2011.
  5. C. Jefferies, C. Wynne, and R. Higgs, “Antiviral TRIMs: friend or foe in autoimmune and autoinflammatory disease?” Nature Reviews Immunology, vol. 11, no. 9, pp. 617–625, 2011. View at Publisher · View at Google Scholar
  6. L. M. van der Aa, J. P. Levraud, M. Yahmi et al., “A large new subset of TRIM genes highly diversified by duplication and positive selection in teleost fish,” BMC Biology, vol. 7, article 7, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. S. L. Sawyer, M. Emerman, and H. S. Malik, “Discordant evolution of the adjacent antiretroviral genes TRIM22 and TRIM5 in mammals,” PLoS Pathogens, vol. 3, no. 12, article e197, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Nisole, J. P. Stoye, and A. Saïb, “TRIM family proteins: retroviral restriction and antiviral defence,” Nature Reviews Microbiology, vol. 3, no. 10, pp. 799–808, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Meroni and G. Diez-Roux, “TRIM/RBCC, a novel class of “single protein RING finger” E3 ubiquitin ligases,” Bioessays, vol. 27, no. 11, pp. 1147–1157, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. Duan, B. Gao, W. Xu, and S. Xiong, “Identification of TRIM22 as a RING finger E3 ubiquitin ligase,” Biochemical and Biophysical Research Communications, vol. 374, no. 3, pp. 502–506, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Eldin, L. Papon, A. Oteiza, E. Brocchi, T. G. Lawson, and N. Mechti, “TRIM22 E3 ubiquitin ligase activity is required to mediate antiviral activity against encephalomyocarditis virus,” Journal of General Virology, vol. 90, no. 3, pp. 536–545, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. K. L. Lorick, J. P. Jensen, S. Fang, A. M. Ong, S. Hatakeyama, and A. M. Weissman, “RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 20, pp. 11364–11369, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Gao, Z. Duan, W. Xu, and S. Xiong, “Tripartite motif-containing 22 inhibits the activity of hepatitis b virus core promoter, which is dependent on nuclear-located RING domain,” Hepatology, vol. 50, no. 2, pp. 424–433, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. S. D. Barr, J. R. Smiley, and F. D. Bushman, “The interferon response inhibits hiv particle production by induction of TRIM22,” Plos Pathogens, vol. 4, no. 2, Article ID e1000007, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Torok and L. D. Etkin, “Two B or not two B? overview of the rapidly expanding b-box family of proteins,” Differentiation, vol. 67, no. 3, pp. 63–71, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Ozato, D. M. Shin, T. H. Chang, and H. C. Morse, “TRIM family proteins and their emerging roles in innate immunity,” Nature Reviews Immunology, vol. 8, no. 11, pp. 849–860, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. X. Li, D. F. Yeung, A. M. Fiegen, and J. Sodroski, “Determinants of the higher order association of the restriction factor TRIM5α and other tripartite motif (TRIM) proteins,” Journal of Biological Chemistry, vol. 286, no. 32, pp. 27959–27970, 2011. View at Publisher · View at Google Scholar
  18. E. E. Nakayama and T. Shioda, “Anti-retroviral activity of TRIM5α,” Reviews in Medical Virology, vol. 20, no. 2, pp. 77–92, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. Z. Lukic and E. M. Campbell, “The cell biology of TRIM5α,” Current HIV/AIDS Reports, vol. 9, pp. 73–80, 2012. View at Publisher · View at Google Scholar
  20. G. Sivaramakrishnan, Y. Sun, R. Rajmohan, and V. C. L. Lin, “B30.2/SPRY domain in tripartite motif-containing 22 is essential for the formation of distinct nuclear bodies,” FEBS Letters, vol. 583, no. 12, pp. 2093–2099, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. D. A. D. Parry, R. D. B. Fraser, and J. M. Squire, “Fifty years of coiled-coils and α-helical bundles: a close relationship between sequence and structure,” Journal of Structural Biology, vol. 163, no. 3, pp. 258–269, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Reymond, G. Meroni, A. Fantozzi et al., “The tripartite motif family identifies cell compartments,” EMBO Journal, vol. 20, no. 9, pp. 2140–2151, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. C. C. Mische, H. Javanbakht, B. Song et al., “Retroviral restriction factor TRIM5α is a TRIMer,” Journal of Virology, vol. 79, no. 22, pp. 14446–14450, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Bouazzaoui, M. Kreutz, V. Eisert et al., “Stimulated trans-acting factor of 50kDa (Staf50) inhibits HIV-1 replication in human monocyte-derived macrophages,” Virology, vol. 356, no. 1-2, pp. 79–94, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Kajaste-Rudnitski, S. S. Marelli, C. Pultrone et al., “TRIM22 inhibits HIV-1 transcription independently of its E3 ubiquitin ligase activity, Tat, and NF-κB-responsive long terminal repeat elements,” Journal of Virology, vol. 85, no. 10, pp. 5183–5196, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Singh, G. Gaiha, L. Werner et al., “Association of TRIM22 with the type 1 interferon response and viral control duRING primary HIV-1 infection,” Journal of Virology, vol. 85, no. 1, pp. 208–216, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. D. A. Rhodes, B. De Bono, and J. Trowsdale, “Relationship between spry and b30.2 protein domains. evolution of a component of immune defence,” Immunology, vol. 116, no. 4, pp. 411–417, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Grütter, C. Briand, G. Capitani et al., “Structure of the pryspry-domain: implications for autoinflammatory diseases,” FEBS Letters, vol. 580, no. 1, pp. 99–106, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Ohkura, M. W. Yap, T. Sheldon, and J. P. Stoye, “All three variable regions of the TRIM5α B30.2 domain can contribute to the specificity of retrovirus restriction,” Journal of Virology, vol. 80, no. 17, pp. 8554–8565, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Sivaramakrishnan, Y. Sun, S. K. Tan, and V. C. L. Lin, “Dynamic localization of tripartite motif-containing 22 in nuclear and nucleolar bodies,” Experimental Cell Research, vol. 315, no. 8, pp. 1521–1532, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Tissot, S. A. Taviaux, S. Diriong, and N. Mechti, “Localization of Staf50, a member of the RING finger family, to 11p15 by ruorescence in situ hybridization,” Genomics, vol. 34, no. 1, pp. 151–153, 1996. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Zhang, S. Qin, S. N. J. Sait et al., “The pericentromeric region of human chromosome 11: evidence for a chromosome-specific duplication,” Cytogenetics and Cell Genetics, vol. 94, no. 3-4, pp. 137–141, 2001. View at Scopus
  33. S. P. Otto and P. Yong, “The evolution of gene duplicates,” Advances in Genetics, vol. 46, pp. 451–483, 2002. View at Scopus
  34. R. C. Moore and M. D. Purugganan, “The early stages of duplicate gene evolution,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 26, pp. 15682–15687, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. B. Conrad and S. E. Antonarakis, “Gene duplication: a drive for phenotypic diversity and cause of human disease,” Annual Review of Genomics and Human Genetics, vol. 8, pp. 17–35, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Sardiello, S. Cairo, B. Fontanella, A. Ballabio, and G. Meroni, “Genomic analysis of the TRIM family reveals two groups of genes with distinct evolutionary properties,” BMC Evolutionary Biology, vol. 8, no. 1, article 225, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. S. L. Sawyer, L. I. Wu, M. Emerman, and H. S. Malik, “Positive selection of primate TRIM5α identifies a critical species-specific retroviral restriction domain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 8, pp. 2832–2837, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. M. W. Yap, S. Nisole, and J. P. Stoye, “A single amino acid change in the spry domain of human TRIM5α leads to HIV-1 restriction,” Current Biology, vol. 15, no. 1, pp. 73–78, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Stremlau, M. Perron, S. Welikala, and J. Sodroski, “Species-specific variation in the B30.2(SPRY) domain of TRIM5α determines the potency of human immunodeficiency virus restriction,” Journal of Virology, vol. 79, no. 5, pp. 3139–3145, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. A. M. Herr, R. Dressel, and L. Walter, “Different subcellular localisations of TRIM22 suggest species-specific function,” Immunogenetics, vol. 61, no. 4, pp. 271–280, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Yu, B. Gao, Z. Duan, W. Xu, and S. Xiong, “Identification of tripartite motif-containing 22 (TRIM22) as a novel NF-κB activator,” Biochemical and Biophysical Research Communications, vol. 410, no. 2, pp. 247–251, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Petersson, P. Lönnbro, A. M. Herr, M. Mörgelin, U. Gullberg, and K. Drott, “The human IFN-inducible p53 target gene TRIM22 colocalizes with the centrosome independently of cell cycle phase,” Experimental Cell Research, vol. 316, no. 4, pp. 568–579, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. X. Li, B. Gold, C. O'hUigin et al., “Unique features of TRIM5α among closely related human TRIM family members,” Virology, vol. 360, no. 2, pp. 419–433, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Cioce and A. I. Lamond, “Cajal bodies: a long history of discovery,” Annual Review of Cell and Developmental Biology, vol. 21, pp. 105–131, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. C. Tissot and N. Mechti, “Molecular cloning of a new interferon-induced factor that represses human immunodeficiency virus type i long terminal repeat expression,” Journal of Biological Chemistry, vol. 270, no. 25, pp. 14891–14898, 1995. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Obad, H. Brunnström, J. Vallon-Christersson, A. Borg, K. Drott, and U. Gullberg, “Staf50 is a novel p53 target gene conferRING reduced clonogenic growth of leukemic U-937 cells,” Oncogene, vol. 23, no. 23, pp. 4050–4059, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. C. Gongora, C. Tissot, C. Cerdan, and N. Mechti, “The interferon-inducible Staf50 gene is downregulated during t cell costimulation by CD2 and CD28,” Journal of Interferon and Cytokine Research, vol. 20, no. 11, pp. 955–961, 2000. View at Publisher · View at Google Scholar · View at Scopus
  48. B. Gao, Y. Wang, W. Xu, Z. Duan, and S. Xiong, “A 55 extended IFN-stimulating response element is crucial for IFN-γ-induced tripartite motif 22 expression via interaction with ifn regulatory factor-1,” Journal of Immunology, vol. 185, no. 4, pp. 2314–2323, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. Wang, B. Gao, W. Xu, and S. Xiong, “Brg1 is indispensable for IFN-γ-induced TRIM22 expression, which is dependent on the recruitment of IRF-1,” Biochemical and Biophysical Research Communications, vol. 410, no. 3, pp. 549–554, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Obad, T. Olofsson, N. Mechti, U. Gullberg, and K. Drott, “Regulation of the interferon-inducible p53 target gene TRIM22 (Staf50) in human t lymphocyte activation,” Journal of Interferon and Cytokine Research, vol. 27, no. 10, pp. 857–864, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. S. Wieland, R. Thimme, R. H. Purcell, and F. V. Chisari, “Genomic analysis of the host response to hepatitis b virus infection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 17, pp. 6669–6674, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. A. I. Su, J. P. Pezacki, L. Wodicka et al., “Genomic analysis of the host response to hepatitis C virus infection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 24, pp. 15669–15674, 2002. View at Publisher · View at Google Scholar · View at Scopus
  53. M. E. Folkers, D. A. Delker, C. I. Maxwell et al., “Encode tiling array analysis identifies differentially expressed annotated and novel 5 capped RNAs in hepatitis C infected liver,” Plos ONE, vol. 6, no. 2, Article ID e14697, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. X. Y. Mo, W. Ma, Y. Zhang et al., “Microarray analyses of differentially expressed human genes and biological processes in ECV304 cells infected with rubella virus,” Journal of Medical Virology, vol. 79, no. 11, pp. 1783–1791, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. E. Izmailova, F. M. N. Bertley, Q. Huang et al., “HIV-1 Tat reprograms immature dendritic cells to express chemoattractants for activated T cells and macrophages,” Nature Medicine, vol. 9, no. 2, pp. 191–197, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. Y. E. Chang and L. A. Laimins, “Microarray analysis identifies interferon-inducible genes and Stat-1 as major transcriptional targets of human papillomavirus type 31,” Journal of Virology, vol. 74, no. 9, pp. 4174–4182, 2000. View at Publisher · View at Google Scholar · View at Scopus
  57. Y. Wang, H. Li, Q. Tang, G. G. Maul, and Y. Yuan, “Kaposi's sarcoma-associated herpesvirus ori-lyt-dependent DNA replication: involvement of host cellular factors,” Journal of Virology, vol. 82, no. 6, pp. 2867–2882, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. O. Bandman, R. T. Coleman, J. F. LoRING, J. J. Seilhamer, and B. G. Cocks, “Complexity of inflammatory responses in endothelial cells and vascular smooth muscle cells determined by microarray analysis,” Annals of the New York Academy of Sciences, vol. 975, pp. 77–90, 2002. View at Scopus
  59. Y. J. Deng, Z. X. Huang, C. J. Zhou et al., “Gene profiling involved in immature CD4+ T lymphocyte responsible for systemic lupus erythematosus,” Molecular Immunology, vol. 43, no. 9, pp. 1497–1507, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. B. Zirn, O. Hartmann, B. Samans et al., “Expression profiling of wilms tumors reveals new candidate genes for different clinical parameters,” International Journal of Cancer, vol. 118, no. 8, pp. 1954–1962, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. S. Wittmann, C. Wunder, B. Zirn et al., “New prognostic markers revealed by evaluation of genes correlated with clinical parameters in wilms tumors,” Genes Chromosomes and Cancer, vol. 47, no. 5, pp. 386–395, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. T. X. Liu, J. W. Zhang, J. Tao et al., “Gene expression networks underlying retinoic acid-induced differentiation of acute promyelocytic leukemia cells,” Blood, vol. 96, no. 4, pp. 1496–1504, 2000. View at Scopus
  63. S. Obad, T. Olofsson, N. Mechti, U. Gullberg, and K. Drott, “Expression of the IFN-inducible p53-target gene TRIM22 is down-regulated duRING erythroid differentiation of human bone marrow,” Leukemia Research, vol. 31, no. 7, pp. 995–1001, 2007. View at Publisher · View at Google Scholar · View at Scopus