About this Journal Submit a Manuscript Table of Contents
Mediators of Inflammation
Volume 2013 (2013), Article ID 395672, 8 pages
http://dx.doi.org/10.1155/2013/395672
Research Article

Exercise and Caloric Restriction Alter the Immune System of Mice Submitted to a High-Fat Diet

1Department of Biophysics, Federal University of São Paulo, 04023-062 São Paulo, SP, Brazil
2School of Arts, Sciences and Humanities, University of Sao Paulo, Avenue Arlindo Bettio 1000, 03828-000 São Paulo, SP, Brazil
3Department of Immunology, Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, SP, Brazil
4Department of Nutrition, School of Nutrition, Federal University of Pelotas, 96010-610 Pelotas, RS, Brazil

Received 5 December 2012; Revised 5 February 2013; Accepted 6 February 2013

Academic Editor: François Mach

Copyright © 2013 Frederick Wasinski et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. H. Mokdad, B. A. Bowman, E. S. Ford, F. Vinicor, J. S. Marks, and J. P. Koplan, “The continuing epidemics of obesity and diabetes in the United States,” Journal of the American Medical Association, vol. 286, no. 10, pp. 1195–1200, 2001. View at Scopus
  2. P. M. Moraes-Vieira, E. J. Bassi, R. C. Araujo, and N. O. Camara, “Leptin as a link between the immune system and kidney-related diseases: leading actor or just a coadjuvant?” Obesity Reviews, vol. 13, no. 8, pp. 733–743, 2012. View at Publisher · View at Google Scholar
  3. S. Haffner and H. Taegtmeyer, “Epidemic obesity and the metabolic syndrome,” Circulation, vol. 108, no. 13, pp. 1541–1545, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Yang, Y. H. Youm, B. Vandanmagsar et al., “Obesity increases the production of proinflammatory mediators from adipose tissue T cells and compromises TCR repertoire diversity: implications for systemic inflammation and insulin resistance,” Journal of Immunology, vol. 185, no. 3, pp. 1836–1845, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. A. S. Greenberg and M. S. Obin, “Obesity and the role of adipose tissue in inflammation and metabolism,” American Journal of Clinical Nutrition, vol. 83, no. 2, pp. 461S–465S, 2006. View at Scopus
  6. V. Z. Rocha and P. Libby, “The multiple facets of the fat tissue,” Thyroid, vol. 18, no. 2, pp. 175–183, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. R. H. Coker, R. H. Williams, S. E. Yeo et al., “The impact of exercise training compared to caloric restriction on hepatic and peripheral insulin resistance in obesity,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 11, pp. 4258–4266, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Kawanishi, H. Yano, T. Mizokami, et al., “Exercise training attenuates hepatic inflammation, fibrosis and macrophage infiltration during diet induced-obesity in mice,” Brain, Behavior, and Immunity, vol. 26, no. 6, pp. 931–941, 2012. View at Publisher · View at Google Scholar
  9. A. D. Krisan, D. E. Collins, A. M. Crain et al., “Resistance training enhances components of the insulin signaling cascade in normal and high-fat-fed rodent skeletal muscle,” Journal of Applied Physiology, vol. 96, no. 5, pp. 1691–1700, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Gesta, M. Blühet, Y. Yamamoto et al., “Evidence for a role of developmental genes in the origin of obesity and body fat distribution,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 17, pp. 6676–6681, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Sun, Y. Ji, S. Kersten, and L. Qi, “Mechanisms of inflammatory responses in obese adipose tissue,” Annual Review of Nutrition, vol. 32, pp. 261–286, 2012. View at Publisher · View at Google Scholar
  12. A. M. W. Petersen and B. K. Pedersen, “The anti-inflammatory effect of exercise,” Journal of Applied Physiology, vol. 98, no. 4, pp. 1154–1162, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. L. H. Colbert, M. Visser, E. M. Simonsick et al., “Physical activity, exercise, and inflammatory markers in older adults: findings from the health, aging and body composition study,” Journal of the American Geriatrics Society, vol. 52, no. 7, pp. 1098–1104, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. M. L. Kohut, D. A. McCann, D. W. Russell et al., “Aerobic exercise, but not flexibility/resistance exercise, reduces serum IL-18, CRP, and IL-6 independent of β-blockers, BMI, and psychosocial factors in older adults,” Brain, Behavior, and Immunity, vol. 20, no. 3, pp. 201–209, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Goldhammer, A. Tanchilevitch, I. Maor, Y. Beniamini, U. Rosenschein, and M. Sagiv, “Exercise training modulates cytokines activity in coronary heart disease patients,” International Journal of Cardiology, vol. 100, no. 1, pp. 93–99, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. V. Z. Rocha, E. J. Folco, G. Sukhova et al., “Interferon-γ, a Th1 cytokine, regulates fat inflammation: a role for adaptive immunity in obesity,” Circulation Research, vol. 103, no. 5, pp. 467–476, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Todoric, B. Strobl, A. Jais et al., “Cross-talk between interferon-γ and hedgehog signaling regulates adipogenesis,” Diabetes, vol. 60, no. 6, pp. 1668–1676, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. M. E. Kotas, H. Y. Lee, M. P. Gillum, et al., “Impact of CD1d deficiency on metabolism,” PLoS One, vol. 6, no. 9, Article ID e25478. View at Publisher · View at Google Scholar
  19. B. S. Mantell, M. Stefanovic-Racic, X. Yang, N. Dedousis, I. J. Sipula, and R. M. O'Doherty, “mice lacking NKT cells but with a complete complement of CD8+ T-Cells are not protected against the metabolic abnormalities of diet-induced obesity,” PLoS One, vol. 6, no. 6, Article ID e19831, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Kanda, S. Tateya, Y. Tamori et al., “MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity,” Journal of Clinical Investigation, vol. 116, no. 6, pp. 1494–1505, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. C. N. Lumeng, J. L. Bodzin, and A. R. Saltiel, “Obesity induces a phenotypic switch in adipose tissue macrophage polarization,” Journal of Clinical Investigation, vol. 117, no. 1, pp. 175–184, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Gordon, “Alternative activation of macrophages,” Nature Reviews Immunology, vol. 3, no. 1, pp. 23–35, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. A. C. Konner and J. C. Bruning, “Toll-like receptors: linking inflammation to metabolism,” Trends in Endocrinology & Metabolism, vol. 22, no. 1, pp. 16–23, 2011. View at Publisher · View at Google Scholar
  24. A. Ito, T. Suganami, A. Yamauchi et al., “Role of CC chemokine receptor 2 in bone marrow cells in the recruitment of macrophages into obese adipose tissue,” Journal of Biological Chemistry, vol. 283, no. 51, pp. 35715–35723, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Nishimura, I. Manabe, M. Nagasaki et al., “CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity,” Nature Medicine, vol. 15, no. 8, pp. 914–920, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Mombaerts, J. Iacomini, R. S. Johnson, K. Herrup, S. Tonegawa, and V. E. Papaioannou, “RAG-1-deficient mice have no mature B and T lymphocytes,” Cell, vol. 68, no. 5, pp. 869–877, 1992. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Shinkai, G. Rathbun, K. P. Lam et al., “RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement,” Cell, vol. 68, no. 5, pp. 855–867, 1992. View at Publisher · View at Google Scholar · View at Scopus
  28. T. J. Schall, K. Bacon, R. D. R. Camp, J. W. Kaspari, and D. V. Goeddel, “Human macrophage inflammatory protein α (MIP-1α) and MIP-1β chemokines attract distinct populations of lymphocytes,” Journal of Experimental Medicine, vol. 177, no. 6, pp. 1821–1825, 1993. View at Scopus
  29. P. Loetscher, M. Seitz, I. Clark-Lewis, M. Baggiolini, and B. Moser, “Activation of NK cells by CC chemokines: chemotaxis, Ca2+ mobilization, and enzyme release,” Journal of Immunology, vol. 156, no. 1, pp. 322–327, 1996. View at Scopus
  30. Q. Wang, X. D. Perrard, J. L. Perrard, et al., “Differential effect of weight loss with low-fat diet or high-fat diet restriction on inflammation in the liver and adipose tissue of mice with diet-induced obesity,” Atherosclerosis, vol. 219, no. 1, pp. 100–108, 2011. View at Publisher · View at Google Scholar
  31. M. A. Cornier, E. L. Melanson, A. K. Salzberg, et al., “The effects of exercise on the neuronal response to food cues,” Physiology & Behavior, vol. 105, no. 4, pp. 1028–1034, 2012.
  32. D. Stensel, “Exercise, appetite and appetite-regulating hormones: implications for food intake and weight control,” Annals of Nutrition and Metabolism, vol. 57, supplement 2, pp. 36–42, 2011. View at Publisher · View at Google Scholar · View at Scopus