About this Journal Submit a Manuscript Table of Contents
Mediators of Inflammation
Volume 2013 (2013), Article ID 725102, 10 pages
http://dx.doi.org/10.1155/2013/725102
Review Article

Long Pentraxin 3: Experimental and Clinical Relevance in Cardiovascular Diseases

1Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, 20133 Milan, Italy
2Center for the Study of Atherosclerosis, Ospedale Bassini, 20092 Cinisello Balsamo, Italy
3IRCCS Multimedica, 20162 Milan, Italy
4The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University, London E1 2AT, UK

Received 21 December 2012; Accepted 27 February 2013

Academic Editor: Austin Meng Guo

Copyright © 2013 Fabrizia Bonacina et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Libby, P. M. Ridker, and G. K. Hansson, “Inflammation in atherosclerosis. From pathophysiology to practice,” Journal of the American College of Cardiology, vol. 54, no. 23, pp. 2129–2138, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Battistoni, S. Rubattu, and M. Volpe, “Circulating biomarkers with preventive, diagnostic and prognostic implications in cardiovascular diseases,” International Journal of Cardiology, vol. 157, no. 2, pp. 160–168, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. G. A. Bonaterra, S. Zügel, and R. Kinscherf, “Novel systemic cardiovascular disease biomarkers,” Current Molecular Medicine, vol. 10, no. 2, pp. 180–205, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Verma, P. E. Szmitko, and P. M. Ridker, “C-reactive protein comes of age,” Nature Clinical Practice Cardiovascular Medicine, vol. 2, no. 1, pp. 29–36, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Introna, V. Vidal Alles, M. Castellano et al., “Cloning of mouse ptx3, a new member of the pentraxin gene family expressed at extrahepatic sites,” Blood, vol. 87, no. 5, pp. 1862–1872, 1996. View at Scopus
  6. C. Garlanda, B. Bottazzi, A. Bastone, and A. Mantovani, “Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility,” Annual Review of Immunology, vol. 23, pp. 337–366, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. M. B. Pepys and G. M. Hirschfield, “C-reactive protein: a critical update,” Journal of Clinical Investigation, vol. 111, no. 12, pp. 1805–1812, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Breviario, E. M. D'Aniello, J. Golay et al., “Interleukin-1-inducible genes in endothelial cells. Cloning of a new gene related to C-reactive protein and serum amyloid P component,” Journal of Biological Chemistry, vol. 267, no. 31, pp. 22190–22197, 1992. View at Scopus
  9. G. W. Lee, T. H. Lee, and J. T. Vilcek, “TSG-14, a tumor necrosis factor- and IL-1-inducible protein, is a novel member of the pentaxin family of acute phase proteins,” Journal of Immunology, vol. 150, no. 5, pp. 1804–1812, 1993. View at Scopus
  10. C. Garlanda, E. Hirsch, S. Bozza et al., “Non-redundant role of the long pentraxin PTX3 in anti-fungal innate immune response,” Nature, vol. 420, no. 6912, pp. 182–186, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Inforzato, S. Jaillon, F. Moalli et al., “The long pentraxin PTX3 at the crossroads between innate immunity and tissue remodelling,” Tissue Antigens, vol. 77, no. 4, pp. 271–282, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. G. D. Norata, C. Garlanda, and A. L. Catapano, “The long pentraxin PTX3: a modulator of the immunoinflammatory response in atherosclerosis and cardiovascular diseases,” Trends in Cardiovascular Medicine, vol. 20, no. 2, pp. 35–40, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Peri, M. Introna, D. Corradi et al., “PTX3, a prototypical long pentraxin, is an early indicator of acute myocardial infarction in humans,” Circulation, vol. 102, no. 6, pp. 636–641, 2000. View at Scopus
  14. A. Altmeyer, L. Klarapfer, A. R. Goodman, and J. Vilcek, “Promoter structure and transcriptional activation of the murine TSG-14 gene encoding a tumor necrosis factor/interleukin-1-inducible pentraxin protein,” Journal of Biological Chemistry, vol. 270, no. 43, pp. 25584–25590, 1995. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Basile, A. Sica, E. D'Aniello et al., “Characterization of the promoter for the human long pentraxin PTX3: role of NF-κB in tumor necrosis factor-α and interleukin-1β regulation,” Journal of Biological Chemistry, vol. 272, no. 13, pp. 8172–8178, 1997. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Inforzato, G. Peri, A. Doni et al., “Structure and function of the long pentraxin PTX3 glycosidic moiety: fine-tuning of the Interaction with C1q and Complement Activation,” Biochemistry, vol. 45, no. 38, pp. 11540–11551, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. V. V. Alles, B. Bottazzi, G. Peri, J. Golay, M. Introna, and A. Mantovani, “Inducible expression of PTX3, a new member of the pentraxin family, in human mononuclear phagocytes,” Blood, vol. 84, no. 10, pp. 3483–3493, 1994. View at Scopus
  18. P. Jeannin, B. Bottazzi, M. Sironi et al., “Complexity and complementarity of outer membrane protein A recognition by cellular and humoral innate immunity receptors,” Immunity, vol. 22, no. 5, pp. 551–560, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. V. Vouret-Craviari, C. Matteucci, G. Peri, G. Poli, M. Introna, and A. Mantovani, “Expression of a long pentraxin, PTX3, by monocytes exposed to the mycobacterial cell wall component lipoarabinomannan,” Infection and Immunity, vol. 65, no. 4, pp. 1345–1350, 1997. View at Scopus
  20. M. Presta, M. Camozzi, G. Salvatori, and M. Rusnati, “Role of the soluble pattern recognition receptor PTX3 in vascular biology,” Journal of Cellular and Molecular Medicine, vol. 11, no. 4, pp. 723–738, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Klouche, G. Peri, C. Knabbe et al., “Modified atherogenic lipoproteins induce expression of pentraxin-3 by human vascular smooth muscle cells,” Atherosclerosis, vol. 175, no. 2, pp. 221–228, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Jaillon, G. Peri, Y. Delneste et al., “The humoral pattern recognition receptor PTX3 is stored in neutrophil granules and localizes in extracellular traps,” Journal of Experimental Medicine, vol. 204, no. 4, pp. 793–804, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. V. Brinkmann, U. Reichard, C. Goosmann et al., “Neutrophil extracellular traps kill bacteria,” Science, vol. 303, no. 5663, pp. 1532–1535, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. T. A. Fuchs, U. Abed, C. Goosmann et al., “Novel cell death program leads to neutrophil extracellular traps,” Journal of Cell Biology, vol. 176, no. 2, pp. 231–241, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Doni, G. Mantovani, C. Porta et al., “Cell-specific regulation of PTX3 by glucocorticoid hormones in hematopoietic and nonhematopoietic cells,” Journal of Biological Chemistry, vol. 283, no. 44, pp. 29983–29992, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. G. D. Norata, A. Pirillo, and A. L. Catapano, “HDLs, immunity, and atherosclerosis,” Current Opinion in Lipidology, vol. 22, no. 5, pp. 410–416.
  27. G. D. Norata, P. Marchesi, A. Pirillo et al., “Long pentraxin 3, a key component of innate immunity, is modulated by high-density lipoproteins in endothelial cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 5, pp. 925–931, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. G. D. Norata, A. Pirillo, E. Ammirati, and A. Luigi Catapano, “Emerging role of high density lipoproteins as a player in the immune system,” Atherosclerosis, vol. 220, no. 1, pp. 11–21, 2012. View at Publisher · View at Google Scholar
  29. A. Iwasaki and R. Medzhitov, “Regulation of adaptive immunity by the innate immune system,” Science, vol. 327, no. 5963, pp. 291–295, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. S. N. Diniz, R. Nomizo, P. S. Cisalpino et al., “PTX3 function as an opsonin for the dectin-1-dependent internalization of zymosan by macrophages,” Journal of Leukocyte Biology, vol. 75, no. 4, pp. 649–656, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Bozza, F. Bistoni, R. Gaziano et al., “Pentraxin 3 protects from MCMV infection and reactivation through TLR sensing pathways leading to IRF3 activation,” Blood, vol. 108, no. 10, pp. 3387–3396, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. P. C. Reading, S. Bozza, B. Gilbertson et al., “Antiviral activity of the long chain pentraxin PTX3 against influenza viruses,” Journal of Immunology, vol. 180, no. 5, pp. 3391–3398, 2008. View at Scopus
  33. A. Doni, C. Garlanda, B. Bottazzi, et al., “Interactions of the humoral pattern recognition molecule PTX3 with the complement system,” Immunobiology, vol. 217, no. 11, pp. 1122–1128, 2012. View at Publisher · View at Google Scholar
  34. S. Jaillon, P. Jeannin, Y. Hamon et al., “Endogenous PTX3 translocates at the membrane of late apoptotic human neutrophils and is involved in their engulfment by macrophages,” Cell Death and Differentiation, vol. 16, no. 3, pp. 465–474, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. A. J. Nauta, B. Bottazzi, A. Mantovani et al., “Biochemical and functional characterization of the interaction between pentraxin 3 and C1q,” European Journal of Immunology, vol. 33, no. 2, pp. 465–473, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. I. K. H. Poon, M. D. Hulett, and C. R. Parish, “Molecular mechanisms of late apoptotic/necrotic cell clearance,” Cell Death and Differentiation, vol. 17, no. 3, pp. 381–397, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. D. Gershov, S. Kim, N. Brot, and K. B. Elkon, “C-reactive protein binds to apoptotic cells, protects the cells from assembly of the terminal complement components, and sustains an antiinflammatory innate immune response: implications for systemic autoimmunity,” Journal of Experimental Medicine, vol. 192, no. 9, pp. 1353–1363, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. P. Baruah, I. E. Dumitriu, G. Peri et al., “The tissue pentraxin PTX3 limits C1q-mediated complement activation and phagocytosis of apoptotic cells by dendritic cells,” Journal of Leukocyte Biology, vol. 80, no. 1, pp. 87–95, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. P. Rovere, G. Peri, F. Fazzini et al., “The long pentraxin PTX3 binds to apoptotic cells and regulates their clearance by antigen-presenting dentritic cells,” Blood, vol. 96, no. 13, pp. 4300–4306, 2000. View at Scopus
  40. A. P. Van Rossum, F. Fazzini, P. C. Limburg et al., “The prototypic tissue pentraxin PTX3, in contrast to the short pentraxin serum amyloid P, inhibits phagocytosis of late apoptotic neutrophils by macrophages,” Arthritis and Rheumatism, vol. 50, no. 8, pp. 2667–2674, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. B. Bottazzi, V. Vouret-Craviari, A. Bastone et al., “Multimer formation and ligand recognition by the long pentraxin PTX3. Similarities and differences with the short pentraxins C-reactive protein and serum amyloid P component,” Journal of Biological Chemistry, vol. 272, no. 52, pp. 32817–32823, 1997. View at Publisher · View at Google Scholar · View at Scopus
  42. L. T. Roumenina, M. M. Ruseva, A. Zlatarova et al., “Interaction of C1q with IgG1, C-reactive protein and pentraxin 3: mutational studies using recombinant globular head modules of human C1q A, B, and C chains,” Biochemistry, vol. 45, no. 13, pp. 4093–4104, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. J. Ma, A. Doni, T. Hummelshøj et al., “Synergy between ficolin-2 and pentraxin 3 boosts innate immune recognition and complement deposition,” Journal of Biological Chemistry, vol. 284, no. 41, pp. 28263–28275, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Mantovani, M. Locati, N. Polentarutti, A. Vecchi, and C. Garlanda, “Extracellular and intracellular decoys in the tuning of inflammatory cytokines and Toll-like receptors: the new entry TIR8/SIGIRR,” Journal of Leukocyte Biology, vol. 75, no. 5, pp. 738–742, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. L. Deban, S. Jaillon, C. Garlanda, B. Bottazzi, and A. Mantovani, “Pentraxins in innate immunity: lessons from PTX3,” Cell and Tissue Research, vol. 243, pp. 237–249, 2011.
  46. L. Deban, H. Jarva, M. J. Lehtinen et al., “Binding of the long pentraxin PTX3 to factor H: interacting domains and function in the regulation of complement activation,” Journal of Immunology, vol. 181, no. 12, pp. 8433–8440, 2008. View at Scopus
  47. A. Braunschweig and M. Jozsi, “Human pentraxin 3 binds to the complement regulator c4b-binding protein,” PLoS ONE, vol. 6, no. 8, Article ID e23991, 2011.
  48. L. Deban, R. C. Russo, M. Sironi et al., “Regulation of leukocyte recruitment by the long pentraxin PTX3,” Nature Immunology, vol. 11, no. 4, pp. 328–334, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. P. Klint and L. Claesson-Welsh, “Signal transduction by fibroblast growth factor receptors,” Frontiers in Bioscience, vol. 4, pp. D165–177, 1999. View at Scopus
  50. M. Rusnati, M. Camozzi, E. Moroni et al., “Selective recognition of fibroblast growth factor-2 by the long pentraxin PTX3 inhibits angiogenesis,” Blood, vol. 104, no. 1, pp. 92–99, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Camozzi, M. Rusnati, A. Bugatti et al., “Identification of an antiangiogenic FGF2-binding site in the N terminus of the soluble pattern recognition receptor PTX3,” Journal of Biological Chemistry, vol. 281, no. 32, pp. 22605–22613, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Nicoli and M. Presta, “The zebrafish/tumor xenograft angiogenesis assay,” Nature Protocols, vol. 2, no. 11, pp. 2918–2923, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. F. Margheri, S. Serratì, A. Lapucci et al., “Modulation of the angiogenic phenotype of normal and systemic sclerosis endothelial cells by gain-loss of function of pentraxin 3 and matrix metalloproteinase 12,” Arthritis and Rheumatism, vol. 62, no. 8, pp. 2488–2498, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Camozzi, S. Zacchigna, M. Rusnati et al., “Pentraxin 3 inhibits fibroblast growth factor 2-dependent activation of smooth muscle cells in vitro and neointima formation in vivo,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 9, pp. 1837–1842, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. D. Leali, A. Inforzato, R. Ronca, et al., “Long pentraxin 3/tumor necrosis factor-stimulated gene-6 interaction: a biological rheostat for fibroblast growth factor 2-mediated angiogenesis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 32, no. 3, pp. 696–703, 2012. View at Publisher · View at Google Scholar
  56. H. G. Wisniewski and J. Vilček, “Cytokine-induced gene expression at the crossroads of innate immunity, inflammation and fertility: TSG-6 and PTX3/TSG-14,” Cytokine and Growth Factor Reviews, vol. 15, no. 2-3, pp. 129–146, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. C. Fülöp, S. Szántó, D. Mukhopadhyay et al., “Impaired cumulus mucification and female sterility in tumor necrosis factor-induced protein-6 deficient mice,” Development, vol. 130, no. 10, pp. 2253–2261, 2003. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Salustri, C. Garlanda, E. Hirsch et al., “PTX3 plays a key role in the organization of the cumulus oophorus extracellular matrix and in in vivo fertilization,” Development, vol. 131, no. 7, pp. 1577–1586, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. L. Scarchilli, A. Camaioni, B. Bottazzi et al., “PTX3 interacts with inter-α-trypsin inhibitor: implications for hyaluronan organization and cumulus oophorus expansion,” Journal of Biological Chemistry, vol. 282, no. 41, pp. 30161–30170, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. H. Koyama and M. A. Reidy, “Expression of extracellular matrix proteins, accompanies lesion growth in a model of intimal reinjury,” Circulation Research, vol. 82, no. 9, pp. 988–995, 1998. View at Scopus
  61. C. L. Jackson and M. A. Reidy, “Basic fibroblast growth factor: its role in the control of smooth muscle cell migration,” American Journal of Pathology, vol. 143, no. 4, pp. 1024–1031, 1993. View at Scopus
  62. J. C. Fox and J. R. Shanley, “Antisense inhibition of basic fibroblast growth factor induces apoptosis in vascular smooth muscle cells,” Journal of Biological Chemistry, vol. 271, no. 21, pp. 12578–12584, 1996. View at Publisher · View at Google Scholar · View at Scopus
  63. T. Miyamoto, I. Leconte, J. L. Swain, and J. C. Fox, “Autocrine FGF signaling is required for vascular smooth muscle cell survival in vitro,” Journal of Cellular Physiology, vol. 177, no. 1, pp. 58–67, 1998.
  64. A. Segev, D. Aviezer, M. Safran, Z. Gross, and A. Yayon, “Inhibition of vascular smooth muscle cell proliferation by a novel fibroblast growth factor receptor antagonist,” Cardiovascular Research, vol. 53, no. 1, pp. 232–241, 2002. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Agrotis, P. Kanellakis, G. Kostolias et al., “Proliferation of neointimal smooth muscle cells after arterial injury: dependence on interactions between fibroblast growth factor receptor-2 and fibroblast growth factor-9,” Journal of Biological Chemistry, vol. 279, no. 40, pp. 42221–42229, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. G. D. Norata, P. Marchesi, V. K. Pulakazhi Venu et al., “Deficiency of the long pentraxin ptx3 promotes vascular inflammation and atherosclerosis,” Circulation, vol. 120, no. 8, pp. 699–708, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. M. S. Rolph, S. Zimmer, B. Bottazzi, C. Garlanda, A. Mantovani, and G. K. Hansson, “Production of the long pentraxin PTX3 in advanced atherosclerotic plaques,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 22, no. 5, pp. e10–e14, 2002. View at Scopus
  68. P. G. Tipping and W. W. Hancock, “Production of tumor necrosis factor and interleukin-1 by macrophages from human atheromatous plaques,” American Journal of Pathology, vol. 142, no. 6, pp. 1721–1728, 1993. View at Scopus
  69. J. Galea, J. Armstrong, P. Gadsdon, et al., “Interleukin-1 beta in coronary arteries of patients with ischemic heart disease,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 16, no. 8, pp. 1000–1006, 1996. View at Publisher · View at Google Scholar
  70. J. Frostegård, A. K. Ulfgren, P. Nyberg et al., “Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines,” Atherosclerosis, vol. 145, no. 1, pp. 33–43, 1999. View at Publisher · View at Google Scholar · View at Scopus
  71. N. Kotooka, T. Inoue, D. Fujimatsu et al., “Pentraxin3 is a novel marker for stent-induced inflammation and neointimal thickening,” Atherosclerosis, vol. 197, no. 1, pp. 368–374, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. A. S. Savchenko, M. Imamura, R. Ohashi et al., “Expression of pentraxin 3 (PTX3) in human atherosclerotic lesions,” Journal of Pathology, vol. 215, no. 1, pp. 48–55, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. Z. Mallat and A. Tedgui, “HDL, PTX3, and vascular protection,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 5, pp. 809–811, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. G. D. Norata, P. Marchesi, S. Passamonti, A. Pirillo, F. Violi, and A. L. Catapano, “Anti-inflammatory and anti-atherogenic effects of cathechin, caffeic acid and trans-resveratrol in apolipoprotein E deficient mice,” Atherosclerosis, vol. 191, no. 2, pp. 265–271, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. G. D. Norata, V. K. Venu, E. Callegari, V. Paloschi, and A. L. Catapano, “Effect of Tie-2 conditional deletion of BDNF on atherosclerosis in the ApoE null mutant mouse,” Biochimica et Biophysica Acta, vol. 1822, no. 6, pp. 927–935.
  76. E. Ammirati, D. Cianflone, V. Vecchio, et al., “Effector memory T cells are associated with atherosclerosis in humans and animal models,” Journal of the American Heart Association, vol. 1, no. 1, pp. 27–41, 2012. View at Publisher · View at Google Scholar
  77. Y. Matsuura, K. Hatakeyama, T. Imamura, et al., “Different distribution of pentraxin 3 and C-reactive protein in coronary atherosclerotic plaques,” Journal of Atherosclerosis and Thrombosis, vol. 19, no. 9, pp. 837–845, 2012. View at Publisher · View at Google Scholar
  78. E. Napoleone, A. Di Santo, A. Bastone et al., “Long pentraxin PTX3 upregulates tissue factor expression in human endothelial cells: a novel link between vascular inflammation and clotting activation,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 22, no. 5, pp. 782–787, 2002. View at Publisher · View at Google Scholar · View at Scopus
  79. E. Napoleone, A. Di Santo, G. Peri et al., “The long pentraxin PTX3 up-regulates tissue factor in activated monocytes: another link between inflammation and clotting activation,” Journal of Leukocyte Biology, vol. 76, no. 1, pp. 203–209, 2004. View at Publisher · View at Google Scholar · View at Scopus
  80. R. Latini, A. P. Maggioni, G. Peri et al., “Prognostic significance of the long pentraxin PTX3 in acute myocardial infarction,” Circulation, vol. 110, no. 16, pp. 2349–2354, 2004. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Salio, S. Chimenti, N. D. Angelis et al., “Cardioprotective function of the long pentraxin PTX3 in acute myocardial infarction,” Circulation, vol. 117, no. 8, pp. 1055–1064, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. D. G. Souza, A. C. Soares, V. Pinho et al., “Increased mortality and inflammation in tumor necrosis factor-stimulated gene-14 transgenic mice after ischemia and reperfusion injury,” American Journal of Pathology, vol. 160, no. 5, pp. 1755–1765, 2002. View at Scopus
  83. D. G. Souza, F. A. Amaral, C. T. Fagundes et al., “The long pentraxin PTX3 is crucial for tissue inflammation after intestinal ischemia and reperfusion in mice,” American Journal of Pathology, vol. 174, no. 4, pp. 1309–1318, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. A. Buffon, L. M. Biasucci, G. Liuzzo, G. D'Onofrio, F. Crea, and A. Maseri, “Widespread coronary inflammation in unstable angina,” New England Journal of Medicine, vol. 347, no. 1, pp. 5–12, 2002. View at Publisher · View at Google Scholar · View at Scopus
  85. N. Maugeri, P. Rovere-Querini, M. Slavich et al., “Early and transient release of leukocyte pentraxin 3 during acute myocardial infarction,” Journal of Immunology, vol. 187, no. 2, pp. 970–979, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. A. Poli, E. Tremoli, A. Colombo, M. Sirtori, P. Pignoli, and R. Paoletti, “Ultrasonographic measurement of the common carotid artery wall thickness in hypercholesterolemic patients. A new model for the quantitation and follow-up of preclinical atherosclerosis in living human subjects,” Atherosclerosis, vol. 70, no. 3, pp. 253–261, 1988. View at Scopus
  87. M. Knoflach, S. Kiechl, A. Mantovani, et al., “Pentraxin-3 as a marker of advanced atherosclerosis results from the Bruneck, ARMY and ARFY Studies,” PLoS ONE, vol. 7, no. 2, Article ID e31474, 2012.
  88. M. Zanetti, A. Bosutti, C. Ferreira et al., “Circulating pentraxin 3 levels are higher in metabolic syndrome with subclinical atherosclerosis: evidence for association with atherogenic lipid profile,” Clinical and Experimental Medicine, vol. 9, no. 3, pp. 243–248, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. G. D. Norata and A. L. Catapano, “HDL and adaptive immunity: a tale of lipid rafts,” Atherosclerosis, vol. 225, no. 1, pp. 34–35, 2012.
  90. M. E. Suliman, M. I. Yilmaz, J. J. Carrero et al., “Novel links between the long pentraxin 3, endothelial dysfunction, and albuminuria in early and advanced chronic kidney disease,” Clinical Journal of the American Society of Nephrology, vol. 3, no. 4, pp. 976–985, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. N. S. Jenny, A. M. Arnold, L. H. Kuller, R. P. Tracy, and B. M. Psaty, “Associations of pentraxin 3 with cardiovascular disease and all-cause death: the cardiovascular health study,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 29, no. 4, pp. 594–599, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. M. Ustündağ, M. Orak, C. Güloğlu, M. B. Sayhan, O. Alyan, and E. Kale, “Comparative diagnostic accuracy of serum levels of neutrophil activating peptide-2 and pentraxin-3 versus troponin-I in acute coronary syndrome,” Anadolu Kardiyoloji Dergisi, vol. 11, no. 7, pp. 588–594, 2011.
  93. T. Soeki, T. Niki, K. Kusunose, et al., “Elevated concentrations of pentraxin 3 are associated with coronary plaque vulnerability,” Journal of Cardiology, vol. 58, no. 2, pp. 151–157, 2011.
  94. K. Inoue, A. Sugiyama, P. C. Reid et al., “Establishment of a high sensitivity plasma assay for human pentraxin3 as a marker for unstable angina pectoris,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 1, pp. 161–167, 2007. View at Publisher · View at Google Scholar · View at Scopus
  95. R. Latini, L. Gullestad, S. Masson, et al., “Pentraxin-3 in chronic heart failure: the CORONA and GISSI-HF trials,” European Journal of Heart Failure, vol. 14, no. 9, pp. 992–999, 2012.
  96. N. Kotooka, T. Inoue, S. Aoki, M. Anan, H. Komoda, and K. Node, “Prognostic value of pentraxin 3 in patients with chronic heart failure,” International Journal of Cardiology, vol. 130, no. 1, pp. 19–22, 2008. View at Publisher · View at Google Scholar · View at Scopus
  97. J. Matsubara, S. Sugiyama, T. Nozaki et al., “Pentraxin 3 is a new inflammatory marker correlated with left ventricular diastolic dysfunction and heart failure with normal ejection fraction,” Journal of the American College of Cardiology, vol. 57, no. 7, pp. 861–869, 2011. View at Publisher · View at Google Scholar · View at Scopus
  98. B. M. Kaess and R. S. Vasan, “Pentraxin 3-a marker of diastolic dysfunction and HF?” Nature Reviews Cardiology, vol. 8, no. 5, pp. 246–248, 2011. View at Publisher · View at Google Scholar · View at Scopus
  99. H. Ohbayashi, C. Miyazawa, K. Miyamoto, M. Sagara, T. Yamashita, and R. Onda, “Pitavastatin improves plasma pentraxin 3 and arterial stiffness in atherosclerotic patients with hypercholesterolemia,” Journal of Atherosclerosis and Thrombosis, vol. 16, no. 4, pp. 490–500, 2009. View at Scopus