About this Journal Submit a Manuscript Table of Contents
Mediators of Inflammation
Volume 2013 (2013), Article ID 791231, 12 pages
http://dx.doi.org/10.1155/2013/791231
Review Article

Inflammatory Signalings Involved in Airway and Pulmonary Diseases

1Department of Anesthetics, Chang Gung Memorial Hospital at Linkuo and Chang Gung University, Kwei-San, Tao-Yuan 33302, Taiwan
2Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University Kwei-San, Tao-Yuan 33302, Taiwan

Received 20 November 2012; Accepted 31 January 2013

Academic Editor: Fábio Santos Lira

Copyright © 2013 I-Ta Lee and Chuen-Mao Yang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. L. Simpson, S. Phipps, and P. G. Gibson, “Inflammatory mechanisms and treatment of obstructive airway diseases with neutrophilic bronchitis,” Pharmacology and Therapeutics, vol. 124, no. 1, pp. 86–95, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. I. T. Lee, C. C. Lin, Y. C. Wu, and C. M. Yang, “TNF-β induces matrix metalloproteinase-9 expression in A549 cells: role of TNFR1/TRAF2/PKCβ-dependent signaling pathways,” Journal of Cellular Physiology, vol. 224, no. 2, pp. 454–464, 2010.
  3. I. T. Lee, C. W. Lee, W. H. Tung et al., “Cooperation of TLR2 with MyD88, PI3K, and Rac1 in lipoteichoic acid-induced cPLA2/COX-2-dependent airway inflammatory responses,” American Journal of Pathology, vol. 176, no. 4, pp. 1671–1684, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. C. C. Lin, I. T. Lee, W. L. Wu, W. N. Lin, and C. M. Yang, “Adenosine triphosphate regulates NADPH oxidase activity leading to hydrogen peroxide production and COX-2/PGE2 expression in A549 cells,” American Journal of Physiology, vol. 303, no. 5, pp. L401–L412, 2012.
  5. S. F. Luo, C. C. Chang, I. T. Lee et al., “Activation of ROS/NF-κB and Ca2+/CaM kinase II are necessary for VCAM-1 induction in IL-1β-treated human tracheal smooth muscle cells,” Toxicology and Applied Pharmacology, vol. 237, no. 1, pp. 8–21, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. S. E. Cheng, C. C. Lin, I. T. Lee, C. K. Hsu, Y. R. Kou, and C. M. Yang, “Cigarette smoke extract regulates cytosolic phospholipase A2 expression via NADPH oxidase/MAPKs/AP-1 and p300 in human tracheal smooth muscle cells,” Journal of Cellular Biochemistry, vol. 112, no. 2, pp. 589–599, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. I. T. Lee, S. W. Wang, C. W. Lee et al., “Lipoteichoic acid induces HO-1 expression via the TLR2/MyD88/c-Src/NADPH oxidase pathway and Nrf2 in human tracheal smooth muscle cells,” Journal of Immunology, vol. 181, no. 7, pp. 5098–5110, 2008. View at Scopus
  8. I. T. Lee and C. M. Yang, “Role of NADPH oxidase/ROS in pro-inflammatory mediators-induced airway and pulmonary diseases,” Biochemical Pharmacology, vol. 84, no. 5, pp. 581–590, 2012.
  9. T. A. Springer, “Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm,” Cell, vol. 76, no. 2, pp. 301–314, 1994. View at Publisher · View at Google Scholar · View at Scopus
  10. J. M. Cook-Mills, “VCAM-1 signals during lymphocyte migration: role of reactive oxygen species,” Molecular Immunology, vol. 39, no. 9, pp. 499–508, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. M. J. Elices, L. Osborn, Y. Takada et al., “VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site,” Cell, vol. 60, no. 4, pp. 577–584, 1990. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Osborn, C. Hession, R. Tizard et al., “Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes,” Cell, vol. 59, no. 6, pp. 1203–1211, 1989. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Tanida, T. Mizoshita, T. Mizushima et al., “Involvement of oxidative stress and mucosal addressin cell adhesion molecule-1 (MAdCAM-1) in inflammatory bowel disease,” Journal of Clinical Biochemistry and Nutrition, vol. 48, no. 2, pp. 112–116, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Michalska, L. Machtoub, H. D. Manthey, et al., “Visualization of vascular inflammation in the atherosclerotic mouse by ultrasmall superparamagnetic iron oxide vascular cell adhesion molecule-1-specific nanoparticles,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 32, no. 10, pp. 2350–2357, 2012.
  15. T. Sashio, H. Kume, N. Takeda, et al., “Possible involvement of sphingosine-1-phosphate/Gi/RhoA pathways in adherence of eosinophils to pulmonary endothelium,” Allergology International, vol. 61, no. 2, pp. 283–293, 2012.
  16. E. C. Butcher, “Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity,” Cell, vol. 67, no. 6, pp. 1033–1036, 1991. View at Scopus
  17. J. E. Chin, C. A. Hatfield, G. E. Winterrowd et al., “Airway recruitment of leukocytes in mice is dependent on α4-integrins and vascular cell adhesion molecule-1,” American Journal of Physiology, vol. 272, no. 2, pp. L219–L229, 1997. View at Scopus
  18. M. F. Tosi, J. M. Stark, A. Hamedani, C. W. Smith, D. C. Gruenert, and Y. T. Huang, “Intercellular adhesion molecule-1 (ICAM-1)-dependent and ICAM-1-independent adhesive interactions between polymorphonuclear leukocytes and human airway epithelial cells infected with parainfluenza virus type 2,” Journal of Immunology, vol. 149, no. 10, pp. 3345–3349, 1992. View at Scopus
  19. S. Montefort, I. H. Feather, S. J. Wilson et al., “The expression of leukocyte-endothelial adhesion molecules is increased in perennial allergic rhinitis,” American Journal of Respiratory Cell and Molecular Biology, vol. 7, no. 4, pp. 393–398, 1992. View at Scopus
  20. S. J. McKeown, A. S. Wallace, and R. B. Anderson, “Expression and function of cell adhesion molecules during neural crest migration,” Developmental Biology, vol. 373, no. 2, pp. 244–257, 2013. View at Publisher · View at Google Scholar
  21. S. Othumpangat, M. Regier, and G. Piedimonte, “Nerve growth factor modulates human rhinovirus infection in airway epithelial cells by controlling ICAM-1 expression,” American Journal of Physiology, vol. 302, no. 10, pp. L1057–L1066, 2012.
  22. A. Zandvoort, Y. M. van der Geld, M. R. Jonker et al., “High ICAM-1 gene expression in pulmonary fibroblasts of COPD patients: a reflection of an enhanced immunological function,” European Respiratory Journal, vol. 28, no. 1, pp. 113–122, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. A. H. Lundberg, K. Fukatsu, L. Gaber et al., “Blocking pulmonary ICAM-1 expression ameliorates lung injury in established diet-induced pancreatitis,” Annals of Surgery, vol. 233, no. 2, pp. 213–220, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Y. Park, M. H. Pillinger, and S. B. Abramson, “Prostaglandin E2 synthesis and secretion: the role of PGE2 synthases,” Clinical Immunology, vol. 119, no. 3, pp. 229–240, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. I. Kudo, M. Murakami, S. Hara, and K. Inoue, “Mammalian non-pancreatic phospholipases A2,” Biochimica et Biophysica Acta, vol. 1170, no. 3, pp. 217–231, 1993. View at Publisher · View at Google Scholar · View at Scopus
  26. E. J. Ackermann, E. S. Kempner, and E. A. Dennis, “Ca2+-independent cytosolic phospholipase A2 from macrophage-like P388D1 cells. Isolation and characterization,” Journal of Biological Chemistry, vol. 269, no. 12, pp. 9227–9233, 1994. View at Scopus
  27. J. Xu, M. Chalimoniuk, Y. Shu et al., “Prostaglandin E2 production in astrocytes: regulation by cytokines, extracellular ATP, and oxidative agents,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 69, no. 6, pp. 437–448, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Uozumi, K. Kume, T. Nagase et al., “Role of cytosolic phospholipase A2 in allergic response and parturition,” Nature, vol. 390, no. 6660, pp. 618–622, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Sapirstein and J. V. Bonventre, “Specific physiological roles of cytosolic phospholipase A2 as defined by gene knockouts,” Biochimica et Biophysica Acta, vol. 1488, no. 1-2, pp. 139–148, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Nagase, N. Uozumi, S. Ishii et al., “Acute lung injury by sepsis and acid aspiration: a key role for cytosolic phospholipase A2,” Nature Immunology, vol. 1, no. 1, pp. 42–45, 2000. View at Scopus
  31. T. Nagase, N. Uozumi, S. Ishii et al., “A pivotal role of cytosolic phospholipase A2 in bleomycin-induced pulmonary fibrosis,” Nature Medicine, vol. 8, no. 5, pp. 480–484, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. C. G. Irvin, Y. P. Tu, J. R. Sheller, and C. D. Funk, “5-lipoxygenase products are necessary for ovalbumin-induced airway responsiveness in mice,” American Journal of Physiology, vol. 272, no. 6, pp. L1053–L1058, 1997. View at Scopus
  33. W. L. Smith, R. Michael Garavito, and D. L. DeWitt, “Prostaglandin endoperoxide H syntheses (cyclooxygenases)-1 and -2,” Journal of Biological Chemistry, vol. 271, no. 52, pp. 33157–33160, 1996. View at Scopus
  34. T. Tanabe and N. Tohnai, “Cyclooxygenase isozymes and their gene structures and expression,” Prostaglandins and Other Lipid Mediators, vol. 68-69, pp. 95–114, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. I. Morita, “Distinct functions of COX-1 and COX-2,” Prostaglandins and Other Lipid Mediators, vol. 68-69, pp. 165–175, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Daham, W. L. Song, J. A. Lawson et al., “Effects of celecoxib on major prostaglandins in asthma,” Clinical and Experimental Allergy, vol. 41, no. 1, pp. 36–45, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. C. L. Stumm, S. H. Wettlaufer, S. Jancar, and M. Peters-Golden, “Airway remodeling in murine asthma correlates with a defect in PGE2synthesis by lung fibroblasts,” American Journal of Physiology, vol. 301, no. 5, pp. L636–L644, 2011.
  38. R. Korhonen, O. Kosonen, R. Korpela, and E. Moilanen, “The expression of COX2 protein induced by Lactobacillus rhamnosus GG, endotoxin and lipoteichoic acid in T84 epithelial cells,” Letters in Applied Microbiology, vol. 39, no. 1, pp. 19–24, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Suzuki, Y. Miyazaki, K. Takagi, K. Torii, and H. Taniguchi, “Matrix metalloproteinases in the Pathogenesis of asthma and COPD: implications for therapy,” Treatments in Respiratory Medicine, vol. 3, no. 1, pp. 17–27, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. M. M. Gueders, J. M. Foidart, A. Noel, and D. D. Cataldo, “Matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs in the respiratory tract: potential implications in asthma and other lung diseases,” European Journal of Pharmacology, vol. 533, no. 1–3, pp. 133–144, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. D. Cataldo, C. Munaut, A. Noël et al., “MMP-2- and MMP-9-linked gelatinolytic activity in the sputum from patients with asthma and chronic obstructive pulmonary disease,” International Archives of Allergy and Immunology, vol. 123, no. 3, pp. 259–267, 2000. View at Scopus
  42. T. Betsuyaku, M. Nishimura, K. Takeyabu et al., “Neutrophil granule proteins in bronchoalveolar lavage fluid from subjects with subclinical emphysema,” American Journal of Respiratory and Critical Care Medicine, vol. 159, no. 6, pp. 1985–1991, 1999. View at Scopus
  43. C. W. Lee, C. C. Lin, W. N. Lin et al., “TNF-α induces MMP-9 expression via activation of Src/EGFR, PDGFR/PI3K/Akt cascade and promotion of NF-κB/p300 binding in human tracheal smooth muscle cells,” American Journal of Physiology, vol. 292, no. 3, pp. L799–L812, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. C. C. Lin, C. T. Kuo, C. Y. Cheng et al., “IL-1β promotes A549 cell migration via MAPKs/AP-1- and NF-κB-dependent matrix metalloproteinase-9 expression,” Cellular Signalling, vol. 21, no. 11, pp. 1652–1662, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. E. C. Dempsey, A. C. Newton, D. Mochly-Rosen et al., “Protein kinase C isozymes and the regulation of diverse cell responses,” American Journal of Physiology, vol. 279, no. 3, pp. L429–L438, 2000. View at Scopus
  46. E. C. Dempsey, C. D. Cool, and C. M. Littler, “Lung disease and PKCs,” Pharmacological Research, vol. 55, no. 6, pp. 545–559, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. D. Cosentino-Gomes, N. Rocco-Machado, and J. R. Meyer-Fernandes, “Cell signaling through protein kinase C oxidation and activation,” International Journal of Molecular Sciences, vol. 13, no. 9, pp. 10697–10721, 2012.
  48. K. Page, J. Li, L. Zhou et al., “Regulation of airway epithelial cell NF-κB-dependent gene expression by protein kinase Cδ1,” Journal of Immunology, vol. 170, no. 11, pp. 5681–5689, 2003. View at Scopus
  49. L. Pang, M. Nie, L. Corbett, R. Donnelly, S. Gray, and A. J. Knox, “Protein kinase C-epsilon mediates bradykinin-induced cyclooxygenase-2 expression in human airway smooth muscle cells,” The FASEB Journal, vol. 16, no. 11, pp. 1435–1437, 2002. View at Scopus
  50. T. Wu, C. Han, and J. H. Shelhamer, “Involvement of p38 and p42/44 MAP kinases and protein kinase C in the interferon-γ and interleukin-1α-induced phosphorylation of 85-kDa cytosolic phospholipase A2 in primary human bronchial epithelial cells,” Cytokine, vol. 25, no. 1, pp. 11–20, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. E. Tourkina, P. Gooz, J. Pannu et al., “Opposing effects of protein kinase Cα and protein kinase Cε on collagen expression by human lung fibroblasts are mediated via MEK/ERK and caveolin-1 signaling,” Journal of Biological Chemistry, vol. 280, no. 14, pp. 13879–13887, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. E. Kontny, M. Ziólkowska, A. Ryzewska, and W. S. Maśliński, “Protein kinase C-dependent pathway is critical for the production of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6),” Cytokine, vol. 11, no. 11, pp. 839–848, 1999. View at Publisher · View at Google Scholar · View at Scopus
  53. C. H. Lin, H. W. Cheng, H. P. Ma, C. H. Wu, C. Y. Hong, and B. C. Chen, “Thrombin induces NF-κB activation and IL-8/CXCL8 expression in lung epithelial cells by a Rac1-dependent PI3K/Akt pathway,” Journal of Biological Chemistry, vol. 286, no. 12, pp. 10483–10494, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. A. van der Vliet, “Nox enzymes in allergic airway inflammation,” Biochimica Et Biophysica Acta, no. 11, pp. 1035–1044, 1810.
  55. I. Rahman, S. K. Biswas, and A. Kode, “Oxidant and antioxidant balance in the airways and airway diseases,” European Journal of Pharmacology, vol. 533, no. 1–3, pp. 222–239, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Dikalov, “Cross talk between mitochondria and NADPH oxidases,” Free Radical Biology and Medicine, vol. 51, no. 7, pp. 1289–1301, 2011.
  57. I. Rahman and W. MacNee, “Regulation of redox glutathione levels and gene transcription in lung inflammation: therapeutic approaches,” Free Radical Biology and Medicine, vol. 28, no. 9, pp. 1405–1420, 2000. View at Publisher · View at Google Scholar · View at Scopus
  58. I. Rahman, B. Mulier, P. S. Gilmour et al., “Oxidant-mediated lung epithelial cell tolerance: the role of intracellular glutathione and nuclear factor-kappaB,” Biochemical Pharmacology, vol. 62, no. 6, pp. 787–794, 2001. View at Publisher · View at Google Scholar · View at Scopus
  59. H. S. Park, S. R. Kim, and Y. C. Lee, “Impact of oxidative stress on lung diseases,” Respirology, vol. 14, no. 1, pp. 27–38, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. J. A. Marwick, Kian Fan Chung, and I. M. Adcock, “Phosphatidylinositol 3-kinase isoforms as targets in respiratory disease,” Therapeutic Advances in Respiratory Disease, vol. 4, no. 1, pp. 19–34, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. D. A. Medina-Tato, S. G. Ward, and M. L. Watson, “Phosphoinositide 3-kinase signalling in lung disease: leucocytes and beyond,” Immunology, vol. 121, no. 4, pp. 448–461, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. K. Ito, G. Caramori, and I. M. Adcock, “Therapeutic potential of phosphatidylinositol 3-kinase inhibitors in inflammatory respiratory disease,” Journal of Pharmacology and Experimental Therapeutics, vol. 321, no. 1, pp. 1–8, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. W. Duan, A. M. K. Aguinaldo Datiles, B. P. Leung, C. J. Vlahos, and W. S. F. Wong, “An anti-inflammatory role for a phosphoinositide 3-kinase inhibitor LY294002 in a mouse asthma model,” International Immunopharmacology, vol. 5, no. 3, pp. 495–502, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. K. S. Lee, H. K. Lee, J. S. Hayflick, Y. C. Lee, and K. D. Puri, “Inhibition of phosphoinositide 3-kinase δ attenuates allergic airway inflammation and hyperresponsiveness in murine asthma model,” FASEB Journal, vol. 20, no. 3, pp. 455–465, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. S. B. Lee, E. S. Cho, H. S. Yang, H. Kim, and H. D. Um, “Serum withdrawal kills U937 cells by inducing a positive mutual interaction between reactive oxygen species and phosphoinositide 3-kinase,” Cellular Signalling, vol. 17, no. 2, pp. 197–204, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. D. Okutani, M. Lodyga, B. Han, and M. Liu, “Src protein tyrosine kinase family and acute inflammatory responses,” American Journal of Physiology, vol. 291, no. 2, pp. L129–L141, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. C. C. Lin, I. T. Lee, Y. L. Yang, C. W. Lee, Y. R. Kou, and C. M. Yang, “Induction of COX-2/PGE2/IL-6 is crucial for cigarette smoke extract-induced airway inflammation: role of TLR4-dependent NADPH oxidase activation,” Free Radical Biology and Medicine, vol. 48, no. 2, pp. 240–254, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Severgnini, S. Takahashi, P. Tu et al., “Inhibition of the Src and Jak kinases protects against lipopolysaccharide-induced acute lung injury,” American Journal of Respiratory and Critical Care Medicine, vol. 171, no. 8, pp. 858–867, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. K. Kohri, I. F. Ueki, J. J. Shim et al., “Pseudomonas aeruginosa induces MUC5AC production via epidermal growth factor receptor,” European Respiratory Journal, vol. 20, no. 5, pp. 1263–1270, 2002. View at Publisher · View at Google Scholar · View at Scopus
  70. Y. Gon, Y. Asai, S. Hashimoto et al., “A20 inhibits toll-like receptor 2- and 4-mediated interleukin-8 synthesis in airway epithelial cells,” American Journal of Respiratory Cell and Molecular Biology, vol. 31, no. 3, pp. 330–336, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. W. T. Gerthoffer and C. A. Singer, “MAPK regulation of gene expression in airway smooth muscle,” Respiratory Physiology and Neurobiology, vol. 137, no. 2-3, pp. 237–250, 2003. View at Publisher · View at Google Scholar · View at Scopus
  72. W. Liu, Q. Liang, S. Balzar, S. Wenzel, M. Gorska, and R. Alam, “Cell-specific activation profile of extracellular signal-regulated kinase 1/2, Jun N-terminal kinase, and p38 mitogen-activated protein kinases in asthmatic airways,” Journal of Allergy and Clinical Immunology, vol. 121, no. 4, pp. 893–902, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. W. Duan and W. S. F. Wong, “Targeting mitogen-activated protein kinases for asthma,” Current Drug Targets, vol. 7, no. 6, pp. 691–698, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. J. C. Lee, J. T. Laydon, P. C. McDonnell et al., “A protein kinase involved in the regulation of inflammatory cytokine biosynthesis,” Nature, vol. 372, no. 6508, pp. 739–746, 1994. View at Scopus
  75. J. C. Lee and P. R. Young, “Role of CSBP/p38/RK stress response kinase in LPS and cytokine signaling mechanisms,” Journal of Leukocyte Biology, vol. 59, no. 2, pp. 152–157, 1996. View at Scopus
  76. J. D. Laporte, P. E. Moore, T. Lahiri, I. N. Schwartzman, R. A. Panettieri, and S. A. Shore, “p38 MAP kinase regulates IL-1β responses in cultured airway smooth muscle cells,” American Journal of Physiology, vol. 279, no. 5, pp. L932–L941, 2000. View at Scopus
  77. J. D. Laporte, P. E. Moore, J. H. Abraham et al., “Role of ERK MAP kinases in responses of cultured human airway smooth muscle cells to IL-1β,” American Journal of Physiology, vol. 277, no. 5, pp. L943–L951, 1999. View at Scopus
  78. B. L. Bennett, “c-Jun N-terminal kinase-dependent mechanisms in respiratory disease,” European Respiratory Journal, vol. 28, no. 3, pp. 651–661, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. A. Rahman and F. Fazal, “Blocking NF-κB: an inflammatory issue,” Proceedings of the American Thoracic Society, vol. 8, no. 6, pp. 497–503, 2011.
  80. Y. C. Lee, K. S. Lee, S. J. Park et al., “Blockade of airway hyperresponsiveness and inflammation in a marine model of asthma by a prodrug of cysteine, L-2-oxothiazolidine-4-carboxylic acid,” FASEB Journal, vol. 18, no. 15, pp. 1917–1919, 2004. View at Publisher · View at Google Scholar · View at Scopus
  81. M. E. Poynter, C. G. Irvin, and Y. M. W. Janssen-Heininger, “Rapid activation of nuclear factor-κB in airway epithelium in a murine model of allergic airway inflammation,” American Journal of Pathology, vol. 160, no. 4, pp. 1325–1334, 2002. View at Scopus
  82. J. H. Oh, E. J. Park, J. W. Park, J. Lee, S. H. Lee, and T. K. Kwon, “A novel cyclin-dependent kinase inhibitor down-regulates tumor necrosis factor-α (TNF-α)-induced expression of cell adhesion molecules by inhibition of NF-κB activation in human pulmonary epithelial cells,” International Immunopharmacology, vol. 10, no. 5, pp. 572–579, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. I. T. Lee, S. F. Luo, C. W. Lee et al., “Overexpression of HO-1 protects against TNF-α-mediated airway inflammation by down-regulation of TNFR1-dependent oxidative stress,” American Journal of Pathology, vol. 175, no. 2, pp. 519–532, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. S. P. M. Reddy and B. T. Mossman, “Role and regulation of activator protein-1 in toxicant-induced responses of the lung,” American Journal of Physiology, vol. 283, no. 6, pp. L1161–L1178, 2002. View at Scopus
  85. P. W. Vesely, P. B. Staber, G. Hoefler, and L. Kenner, “Translational regulation mechanisms of AP-1 proteins,” Mutation Research, vol. 682, no. 1, pp. 7–12, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. Z. Gao and J. Ye, “Inhibition of transcriptional activity of c-JUN by SIRT1,” Biochemical and Biophysical Research Communications, vol. 376, no. 4, pp. 793–796, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. R. Zhang, H. Z. Chen, J. J. Liu et al., “SIRT1 suppresses activator protein-1 transcriptional activity and cyclooxygenase-2 expression in macrophages,” Journal of Biological Chemistry, vol. 285, no. 10, pp. 7097–7110, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. P. J. Barnes and I. M. Adcock, “Transcription factors and asthma,” European Respiratory Journal, vol. 12, no. 1, pp. 221–234, 1998. View at Publisher · View at Google Scholar · View at Scopus
  89. J. Saklatvala, “The p38 MAP kinase pathway as a therapeutic target in inflammatory disease,” Current Opinion in Pharmacology, vol. 4, no. 4, pp. 372–377, 2004. View at Publisher · View at Google Scholar · View at Scopus
  90. K. J. Escott, M. G. Belvisi, M. A. Birrell, S. E. Webber, M. L. Foster, and C. A. Sargent, “Effect of the p38 kinase inhibitor, SB 203580, on allergic airway inflammation in the rat,” British Journal of Pharmacology, vol. 131, no. 2, pp. 173–176, 2000. View at Scopus
  91. D. C. Underwood, R. R. Osborn, S. Bochnowicz et al., “SB 239063, a p38 MAPK inhibitor, reduces neutrophilia, inflammatory cytokines, MMP-9, and fibrosis in lung,” American Journal of Physiology, vol. 279, no. 5, pp. L895–L902, 2000. View at Scopus
  92. P. R. Eynott, P. Nath, S. Y. Leung, I. M. Adcock, B. L. Bennett, and K. F. Chung, “Allergen-induced inflammation and airway epithelial and smooth muscle cell proliferation: role of Jun N-terminal kinase,” British Journal of Pharmacology, vol. 140, no. 8, pp. 1373–1380, 2003. View at Publisher · View at Google Scholar · View at Scopus
  93. H. Y. Huang, C. C. Lee, and B. L. Chiang, “Small interfering RNA against interleukin-5 decreases airway eosinophilia and hyper-responsiveness,” Gene Therapy, vol. 15, no. 9, pp. 660–667, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. Y. Darcan-Nicolaisen, H. Meinicke, G. Fels et al., “Small interfering RNA against transcription factor STAT6 inhibits allergic airway inflammation and hyperreactivity in mice 1,” Journal of Immunology, vol. 182, no. 12, pp. 7501–7508, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. S. Y. Lee, H. J. Lee, M. A. Sikder, et al., “Resveratrol inhibits mucin gene expression, production and secretion from airway epithelial cells,” Phytotherapy Research, vol. 26, no. 7, pp. 1082–1087, 2012.
  96. N. Morita, K. Shimoda, M. G. Traber et al., “Vitamin E attenuates acute lung injury in sheep with burn and smoke inhalation injury,” Redox Report, vol. 11, no. 2, pp. 61–70, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. M. Moretti, “Pharmacology and clinical efficacy of erdosteine in chronic obstructive pulmonary disease,” Expert Review of Respiratory Medicine, vol. 1, no. 3, pp. 307–316, 2007.
  98. R. W. D. Negro, “Erdosteine: antitussive and anti-inflammatory effects,” Lung, vol. 186, no. 1, pp. S70–S73, 2008. View at Publisher · View at Google Scholar · View at Scopus
  99. C. M. Greene and K. P. Gaughan, “MicroRNAs in asthma: potential therapeutic targets,” Current Opinion in Pulmonary Medicine, vol. 19, no. 1, pp. 66–72, 2013. View at Publisher · View at Google Scholar