About this Journal Submit a Manuscript Table of Contents
Mediators of Inflammation
Volume 2013 (2013), Article ID 979748, 7 pages
http://dx.doi.org/10.1155/2013/979748
Research Article

Cytokine Patterns in Brain Tumour Progression

1Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
2National Institute for Chemical Pharmaceutical R&D, 112 Calea Vitan, 031299 Bucharest, Romania
3Stefan S Nicolau Institute of Virology, 285 Soseaua Mihai Bravu, 030304 Bucharest, Romania
4Neurology and Neurovascular Diseases National Institute, 10-12 Soseaua Berceni, 041914 Bucharest, Romania
5Elias Emergency University Hospital, 19 Bulevardul Marasti, 011462 Bucharest, Romania

Received 4 March 2013; Accepted 4 June 2013

Academic Editor: Gila Moalem-Taylor

Copyright © 2013 Radu Albulescu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Westermark, “Glioblastoma—a moving target,” Upsala Journal of Medical Sciences, vol. 117, no. 2, pp. 251–256, 2012. View at Publisher · View at Google Scholar
  2. F. E. Bleeker, R. J. Molenaar, and S. Leenstra, “Recent advances in the molecular understanding of glioblastoma,” Journal of Neuro-Oncology, vol. 108, no. 1, pp. 11–27, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Balkwill and A. Mantovani, “Inflammation and cancer: back to Virchow?” The Lancet, vol. 357, no. 9255, pp. 539–545, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Colotta, P. Allavena, A. Sica, C. Garlanda, and A. Mantovani, “Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability,” Carcinogenesis, vol. 30, no. 7, pp. 1073–1081, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. C. P. P. Larghi, E. Riboldi, P. Allavena, A. Mantovani, and A. Sica, “Tumor-infiltrating inflammatory cells as possible therapeutic targets,” in The Inflammatory Milieu of Tumors: Cytokines and Chemokines That Affect Tumor Growth and Metastasis, A. B. Baruch, Ed., pp. 14–28, Bentham eBooks, Tel Aviv, Israel, 2012.
  6. A. Sato, K. Sakurada, T. Kumabe et al., “Association of stem cell marker CD133 expression with dissemination of glioblastomas,” Neurosurgical Review, vol. 33, no. 2, pp. 175–183, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Pistol-Tanase, E. Raducan, S. O. Dima et al., “Assessment of soluble angiogenic markers in pancreatic cancer,” Biomarkers in Medicine, vol. 2, no. 5, pp. 447–455, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Iwami, A. Natsume, and T. Wakabayashi, “Cytokine networks in glioma,” Neurosurgical Review, vol. 34, no. 3, pp. 253–263, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. M. de Palma, M. A. Venneri, R. Galli et al., “Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors,” Cancer Cell, vol. 8, no. 3, pp. 211–226, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Seifert, E. Naumann, J. Hewig, D. Hagemann, and D. Bartussek, “Motivated executive attention—incentives and the noise-compatibility effect,” Biological Psychology, vol. 71, no. 1, pp. 80–89, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Candi, R. A. Knight, A. Spinedi, P. Guerrieri, and G. Melino, “A possible growth factor role of IL-6 in neuroectodermal tumours,” Journal of Neuro-Oncology, vol. 31, no. 1-2, pp. 115–122, 1997. View at Publisher · View at Google Scholar · View at Scopus
  12. Z. Zhu, S. Zhong, and Z. Shen, “Targeting the inflammatory pathways to enhance chemotherapy of cancer,” Cancer Biology and Therapy, vol. 12, no. 2, pp. 95–105, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. S. I. Grivennikov, F. R. Greten, and M. Karin, “Immunity, inflammation, and cancer,” Cell, vol. 140, no. 6, pp. 883–899, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. C. C. Reyes-Gibby, J. Wang, M. Spitz, X. Wu, S. Yennurajalingam, and S. Shete, “Genetic variations in interleukin-8 and interleukin-10 are associated with pain, depressed mood, and fatigue in lung cancer patients,” Journal of Pain and Symptom Management, 2012. View at Publisher · View at Google Scholar
  15. X. M. Wang, T. X. Wu, M. Hamza, E. S. Ramsay, S. M. Wahl, and R. A. Dionne, “Rofecoxib modulates multiple gene expression pathways in a clinical model of acute inflammatory pain,” Pain, vol. 128, no. 1-2, pp. 136–147, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Milligan, V. Zapata, D. Schoeniger et al., “An initial investigation of spinal mechanisms underlying pain enhancement induced by fractalkine, a neuronally released chemokine,” European Journal of Neuroscience, vol. 22, no. 11, pp. 2775–2782, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. B. S. Paugh, L. Bryan, S. W. Paugh et al., “Interleukin-1 regulates the expression of sphingosine kinase 1 in glioblastoma cells,” The Journal of Biological Chemistry, vol. 284, no. 6, pp. 3408–3417, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Wang, Z. Liu, S. Balivada et al., “Interleukin-1β and transforming growth factor-cooperate to induce neurosphere formation and increase tumorigenicity of adherent LN-229 glioma cells,” Stem Cell Research and Therapy, vol. 3, no. 1, article 5, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. T. Yeung, N. S. Bryce, S. Adams et al., “p38 MAPK inhibitors attenuate pro-inflammatory cytokine production and the invasiveness of human U251 glioblastoma cells,” Journal of Neuro-Oncology, vol. 109, no. 1, pp. 35–44, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Tu, G. Bhagat, G. Cui et al., “Overexpression of interleukin-1β induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice,” Cancer Cell, vol. 14, no. 5, pp. 408–419, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Krelin, E. Voronov, S. Dotan et al., “Interleukin-1β-driven inflammation promotes the development and invasiveness of chemical carcinogen-induced tumors,” Cancer Research, vol. 67, no. 3, pp. 1062–1071, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Ancrile, K. Lim, and C. M. Counter, “Oncogenic Ras-induced secretion of IL6 is required for tumorigenesis,” Genes and Development, vol. 21, no. 14, pp. 1714–1719, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. Q. Liu, G. Li, R. Li et al., “IL-6 promotion of glioblastoma cell invasion and angiogenesis in U251 and T98G cell lines,” Journal of Neuro-Oncology, vol. 100, no. 2, pp. 165–176, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Li, G. Li, L. Deng et al., “IL-6 augments the invasiveness of U87MG human glioblastoma multiforme cells via up-regulation of MMP-2 and fascin-1,” Oncology Reports, vol. 23, no. 6, pp. 1553–1559, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Tchirkov, T. Khalil, E. Chautard et al., “Interleukin-6 gene amplification and shortened survival in glioblastoma patients,” The British Journal of Cancer, vol. 96, no. 3, pp. 474–476, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Hagemann, J. Wilson, H. Kulbe et al., “Macrophages induce invasiveness of epithelial cancer cells via NF-κB and JNK,” Journal of Immunology, vol. 175, no. 2, pp. 1197–1205, 2005. View at Scopus
  27. H. Kulbe, R. Thompson, J. L. Wilson et al., “The inflammatory cytokine tumor necrosis factor-α generates an autocrine tumor-promoting network in epithelial ovarian cancer cells,” Cancer Research, vol. 67, no. 2, pp. 585–592, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Kulbe, T. Hagemann, P. W. Szlosarek, F. R. Balkwill, and J. L. Wilson, “The inflammatory cytokine tumor necrosis factor-α regulates chemokine receptor expression on ovarian cancer cells,” Cancer Research, vol. 65, no. 22, pp. 10355–10362, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. J. W. Pollard, “Tumour-educated macrophages promote tumour progression and metastasis,” Nature Reviews Cancer, vol. 4, no. 1, pp. 71–78, 2004. View at Scopus
  30. J. Ryu, B. M. Ku, Y. K. Lee et al., “Resveratrol reduces TNF-α-induced U373MG human glioma cell invasion through regulating NF-κB activation and uPA/uPAR expression,” Anticancer Research, vol. 31, no. 12, pp. 4223–4230, 2011. View at Scopus
  31. K. Tanabe, R. Matsushima-Nishiwaki, S. Yamaguchi, H. Iida, S. Dohi, and O. Kozawa, “Mechanisms of tumor necrosis factor-α-induced interleukin-6 synthesis in glioma cells,” Journal of Neuroinflammation, vol. 7, article 16, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. N. de la Iglesia, G. Konopka, K. Lim et al., “Deregulation of a STAT3-interleukin 8 signaling pathway promotes human glioblastoma cell proliferation and invasiveness,” Journal of Neuroscience, vol. 28, no. 23, pp. 5870–5878, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. C. S. Curran, M. D. Evans, and P. J. Bertics, “GM-CSF production by glioblastoma cells has a functional role in eosinophil survival, activation, and growth factor production for enhanced tumor cell proliferation,” Journal of Immunology, vol. 187, no. 3, pp. 1254–1263, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Kawakami, K. Kawakami, and R. K. Puri, “Interleukin-4-Pseudomonas exotoxin chimeric fusion protein for malignant glioma therapy,” Journal of Neuro-Oncology, vol. 65, no. 1, pp. 15–25, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. T. L. Chiu, M. J. Wang, and C. C. Su, “The treatment of glioblastoma multiforme through activation of microglia and TRAIL induced by rAAV2-mediated IL-12 in a syngeneic rat model,” Journal of Biomedical Science, vol. 19, article 45, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Kumar, D. Kamdar, L. Madden et al., “Th1/Th2 cytokine imbalance in meningioma, anaplastic astrocytoma and glioblastoma multiforme patients,” Oncology Reports, vol. 15, no. 6, pp. 1513–1516, 2006. View at Scopus
  37. B. Qiu, D. Zhang, C. Wang et al., “IL-10 and TGF-β2 are overexpressed in tumor spheres cultured from human gliomas,” Molecular Biology Reports, vol. 38, no. 5, pp. 3585–3591, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Huettner, W. Paulus, and W. Roggendorf, “Increased amounts of IL-10 mRNA in anaplastic astrocytomas and glioblastoma multiforme,” Verhandlungen der Deutschen Gesellschaft fur Pathologie, vol. 78, pp. 418–422, 1994. View at Scopus
  39. P. Hamerlik, J. D. Lathia, R. Rasmussen et al., “Autocrine VEGF-VEGFR2-Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth,” Journal of Experimental Medicine, vol. 209, no. 3, pp. 507–520, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. Piao, J. Liang, L. Holmes et al., “Glioblastoma resistance to anti-VEGF therapy is associated with myeloid cell infiltration, stem cell accumulation, and a mesenchymal phenotype,” Neuro-Oncology, vol. 14, no. 11, pp. 1379–1392, 2012. View at Publisher · View at Google Scholar
  41. S. Bao, Q. Wu, S. Sathornsumetee et al., “Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor,” Cancer Research, vol. 66, no. 16, pp. 7843–7848, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. M. T. Chiao, Y. C. Yang, W. Y. Cheng, C. C. Shen, and J. L. Ko, “CD133+ glioblastoma stem-like cells induce vascular mimicry in vivo,” Current Neurovascular Research, vol. 8, no. 3, pp. 210–219, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. C. Xu, X. Wu, and J. Zhu, “VEGF promotes proliferation of human glioblastoma multiforme stem-like cells through VEGF receptor 2,” The Scientific World Journal, vol. 2013, Article ID 417413, 8 pages, 2013. View at Publisher · View at Google Scholar
  44. W. Loilome, A. D. Joshi, C. M. J. ap Rhys et al., “Glioblastoma cell growth is suppressed by disruption of fibroblast growth factor pathway signaling,” Journal of Neuro-Oncology, vol. 94, no. 3, pp. 359–366, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. G. P. Dunn, M. L. Rinne, J. Wykosky et al., “Emerging insights into the molecular and cellular basis of glioblastoma,” Genes and Development, vol. 26, no. 8, pp. 756–784, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. C. Makimura, T. Arao, H. Matsuoka et al., “Prospective study evaluating the plasma concentrations of twenty-six cytokines and response to morphine treatment in cancer patients,” Anticancer Research, vol. 31, no. 12, pp. 4561–4568, 2011. View at Scopus
  47. Y. Kawasaki, L. Zhang, J. Cheng, and R. Ji, “Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1β, interleukin-6, and tumor necrosis factor-α in regulating synaptic and neuronal activity in the superficial spinal cord,” Journal of Neuroscience, vol. 28, no. 20, pp. 5189–5194, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. N. Momi, S. Kaur, S. R. Krishn, and S. K. Batra, “Discovering the route from inflammation to pancreatic cancer,” Minerva Gastroenterologica e Dietologica, vol. 58, no. 4, pp. 283–297, 2012.
  49. T. A. Ullman and S. H. Itzkowitz, “Intestinal inflammation and cancer,” Gastroenterology, vol. 140, no. 6, pp. 1807–1816, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. S. O. Dima, C. Tanase, R. Albulescu et al., “An exploratory study of inflammatory cytokines as prognostic biomarkers in patients with ductal pancreatic adenocarcinoma,” Pancreas, vol. 41, no. 7, pp. 1001–1007, 2012. View at Publisher · View at Google Scholar