About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2010 (2010), Article ID 901095, 15 pages
http://dx.doi.org/10.1155/2010/901095
Research Article

Assessment of Landslide Susceptibility by Decision Trees in the Metropolitan Area of Istanbul, Turkey

1Department of Geological Research, General Directorate of Mineral Research and Exploration, 06520 Ankara, Turkey
2Department of Computer Engineering, Hacettepe University, Beytepe, 06800 Ankara, Turkey
3Department of Geological Engineering, Hacettepe University, Beytepe, 06800 Ankara, Turkey

Received 29 October 2009; Accepted 29 November 2009

Academic Editor: Cristian Toma

Copyright © 2010 H. A. Nefeslioglu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. C. Turrini and P. Visintainer, “Proposal of a method to define areas of landslide hazard and application to an area of the Dolomites, Italy,” Engineering Geology, vol. 50, no. 3-4, pp. 255–265, 1998. View at Publisher · View at Google Scholar
  2. H. A. Nefeslioglu, C. Gokceoglu, and H. Sonmez, “An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps,” Engineering Geology, vol. 97, no. 3-4, pp. 171–191, 2008. View at Publisher · View at Google Scholar
  3. C. Gökceoglu and H. Aksoy, “Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and image processing techniques,” Engineering Geology, vol. 44, no. 1–4, pp. 147–161, 1996. View at Publisher · View at Google Scholar
  4. D. Turer, H. A. Nefeslioglu, K. Zorlu, and C. Gokceoglu, “Assessment of geo-environmental problems of the Zonguldak province (NW Turkey),” Environmental Geology, vol. 55, no. 5, pp. 1001–1014, 2008. View at Publisher · View at Google Scholar
  5. L. Donati and M. C. Turrini, “An objective method to rank the importance of the factors predisposing to landslides with the GIS methodology: application to an area of the Apennines (Valnerina; Perugia, Italy),” Engineering Geology, vol. 63, no. 3-4, pp. 277–289, 2002. View at Publisher · View at Google Scholar
  6. A. Carrara, M. Cardinali, R. Detti, F. Guzzetti, V. Pasqui, and P. Reichenbach, “GIS techniques and statistical models in evaluating landslide hazard,” Earth Surface Processes & Landforms, vol. 16, no. 5, pp. 427–445, 1991. View at Publisher · View at Google Scholar
  7. P. M. Atkinson and R. Massari, “Generalised linear modelling of susceptibility to landsliding in the central Apennines, Italy,” Computers & Geosciences, vol. 24, no. 4, pp. 373–385, 1998. View at Publisher · View at Google Scholar
  8. F. Guzzetti, A. Carrara, M. Cardinali, and P. Reichenbach, “Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy,” Geomorphology, vol. 31, no. 1–4, pp. 181–216, 1999. View at Publisher · View at Google Scholar
  9. C. Baeza and J. Corominas, “Assessment of shallow landslide susceptibility by means of multivariate statistical techniques,” Earth Surface Processes and Landforms, vol. 26, no. 12, pp. 1251–1263, 2001. View at Publisher · View at Google Scholar
  10. S. Lee and K. Min, “Statistical analysis of landslide susceptibility at Yongin, Korea,” Environmental Geology, vol. 40, no. 9, pp. 1095–1113, 2001. View at Publisher · View at Google Scholar
  11. A. Clerici, S. Perego, C. Tellini, and P. Vescovi, “A procedure for landslide susceptibility zonation by the conditional analysis method,” Geomorphology, vol. 48, no. 4, pp. 349–364, 2002. View at Publisher · View at Google Scholar
  12. S. Lee, “Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data,” International Journal of Remote Sensing, vol. 26, no. 7, pp. 1477–1491, 2005. View at Publisher · View at Google Scholar
  13. T. Can, H. A. Nefeslioglu, C. Gokceoglu, H. Sonmez, and T. Y. Duman, “Susceptibility assessments of shallow earthflows triggered by heavy rainfall at three catchments by logistic regression analyses,” Geomorphology, vol. 72, no. 1–4, pp. 250–271, 2005. View at Publisher · View at Google Scholar
  14. K. T. Chau and J. E. Chan, “Regional bias of landslide data in generating susceptibility maps using logistic regression: case of Hong Kong Island,” Landslides, vol. 2, no. 4, pp. 280–290, 2005. View at Publisher · View at Google Scholar
  15. C. Gokceoglu, H. Sonmez, H. A. Nefeslioglu, T. Y. Duman, and T. Can, “The 17 March 2005 Kuzulu landslide (Sivas, Turkey) and landslide-susceptibility map of its near vicinity,” Engineering Geology, vol. 81, no. 1, pp. 65–83, 2005. View at Publisher · View at Google Scholar
  16. D. J. Varnes, “Slope movement types and processes,” in Landslides Analysis and Control, R. L. Chuster and R. J. Krizek, Eds., vol. 176, pp. 12–33, Transportation Research Board, National Academy of Sciences, New York, NY, USA, 1978.
  17. T. Y. Duman, T. Can, C. Gokceoglu, H. A. Nefeslioglu, and H. Sonmez, “Application of logistic regression for landslide susceptibility zoning of Cekmece Area, Istanbul, Turkey,” Environmental Geology, vol. 51, no. 2, pp. 241–256, 2006. View at Publisher · View at Google Scholar
  18. F. Guzzetti, M. Galli, P. Reichenbach, F. Ardizzone, and M. Cardinali, “Landslide hazard assessment in the Collazzone area, Umbria, Central Italy,” Natural Hazards and Earth System Science, vol. 6, no. 1, pp. 115–131, 2006.
  19. S. Lee and B. Pradhan, “Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models,” Landslides, vol. 4, no. 1, pp. 33–41, 2007. View at Publisher · View at Google Scholar
  20. I. D. Moore, R. B. Grayson, and A. R. Ladson, “Digital terrain modelling: a review of hydrological, geomorphological, and biological applications,” Hydrological Processes, vol. 5, no. 1, pp. 3–30, 1991. View at Publisher · View at Google Scholar
  21. T. Gorum, B. Gonencgil, C. Gokceoglu, and H. A. Nefeslioglu, “Implementation of reconstructed geomorphologic units in landslide susceptibility mapping: the Melen Gorge (NW Turkey),” Natural Hazards, vol. 46, no. 3, pp. 323–351, 2008. View at Publisher · View at Google Scholar
  22. Z. Tang and J. MacLennan, Data Mining with Sql Server, John Wiley & Sons, New York, NY, USA, 2005.
  23. H. Gómez and T. Kavzoglu, “Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela,” Engineering Geology, vol. 78, no. 1-2, pp. 11–27, 2005. View at Publisher · View at Google Scholar
  24. D. P. Kanungo, M. K. Arora, S. Sarkar, and R. P. Gupta, “A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas,” Engineering Geology, vol. 85, no. 3-4, pp. 347–366, 2006. View at Publisher · View at Google Scholar
  25. H. A. Nefeslioglu, T. Y. Duman, and S. Durmaz, “Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey),” Geomorphology, vol. 94, no. 3-4, pp. 401–418, 2008. View at Publisher · View at Google Scholar
  26. A. K. Pachauri and M. Pant, “Landslide hazard mapping based on geological attributes,” Engineering Geology, vol. 32, no. 1-2, pp. 81–100, 1992. View at Publisher · View at Google Scholar
  27. B. Pradhan and S. Lee, “Regional landslide susceptibility analysis using backpropagation neural network model at Cameron Highland, Malaysia,” Landslides. In press. View at Publisher · View at Google Scholar
  28. C. H. Juang, D. H. Lee, and C. Sheu, “Mapping slope failure potential using fuzzy sets,” Journal of Geotechnical Engineering, vol. 118, no. 3, pp. 475–494, 1992. View at Publisher · View at Google Scholar
  29. E. Binaghi, L. Luzi, P. Madella, F. Pergalani, and A. Rampini, “Slope instability zonation: a comparison between certainty factor and fuzzy Dempster-Shafer approaches,” Natural Hazards, vol. 17, no. 1, pp. 77–97, 1998. View at Publisher · View at Google Scholar
  30. M. Ercanoglu and C. Gokceoglu, “Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach,” Environmental Geology, vol. 41, no. 6, pp. 720–730, 2002. View at Publisher · View at Google Scholar
  31. M. Ercanoglu and C. Gokceoglu, “Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey),” Engineering Geology, vol. 75, no. 3-4, pp. 229–250, 2004. View at Publisher · View at Google Scholar
  32. B. Pradhan and S. Lee, “Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network model,” Environmental Earth Sciences. In press. View at Publisher · View at Google Scholar
  33. R. J. Maharaj, “Landslide processes and landslide susceptibility analysis from an upland watershed: a case study from St. Andrew, Jamaica, West Indies,” Engineering Geology, vol. 34, no. 1-2, pp. 53–79, 1993. View at Publisher · View at Google Scholar
  34. R. Soeters and C. J. Van Westen, “Slope instability recognition, analysis and zonation,” in Landslides: Investigation and Mitigation, A. K. Turner and R. L. Schuster, Eds., vol. 247, pp. 129–177, National Academy Press, Washington, DC, USA, 1996.
  35. N. Ambraseys, “The seismic activity of the Marmara Sea region over the last 2000 years,” Bulletin of the Seismological Society of America, vol. 92, no. 1, pp. 1–18, 2002. View at Publisher · View at Google Scholar
  36. T. Y. Duman, M. Kecer, S. Ates, et al., “Istanbul Metropolu Batisindaki (Kucukcekmece-Silivri-Catalca yoresi) Kentsel Gelisme Alanlarinin Yer Bilim Verileri,” MTA, no. 3, p. 249, 2004 (Turkish).
  37. B. Pradhan, S. Lee, and M. F. Buchroithner, “Use of geospatial data for the development of fuzzy algebraic operators to landslide hazard mapping: a case study in Malaysia,” Applied Geomatics, vol. 1, pp. 3–15, 2009. View at Publisher · View at Google Scholar
  38. T. Y. Duman, Ö. Emre, T. Can, et al., “Turkish landslide inventory mapping project: methodology and results on Zonguldak quadrangle (1/500000), working in progress 25 on the geology of turkey and its surroundings,” in Proceedings of the 4th International Turkish Geology Symposium (ITGS '01), p. 392, Adana, Turkey, September 2001.
  39. C. J. Van Westen, A. C. Seijmonsbergen, and F. Mantovani, “Comparing landslide hazard maps,” Natural Hazards, vol. 20, no. 2-3, pp. 137–158, 1999. View at Publisher · View at Google Scholar
  40. J. P. Wilson and J. C. Gallant, Terrain Analysis Principles and Applications, John Wiley & Sons, New York, NY, USA, 2000.
  41. T. Y. Duman, T. Çan, Ö. Emre, et al., “Landslide inventory of northwestern Anatolia, Turkey,” Engineering Geology, vol. 77, no. 1-2, pp. 99–114, 2005. View at Publisher · View at Google Scholar
  42. M. Bruce and K. Dylan, “Equations for potential annual direct incident radiation and heat load,” Journal of Vegetation Science, vol. 13, no. 4, pp. 603–606, 2002. View at Publisher · View at Google Scholar
  43. C. F. Lee, H. Ye, M. R. Yeung, X. Shan, and G. Chen, “AIGIS-based methodology for natural terrain landslide susceptibility mapping in Hong Kong,” Episodes, vol. 24, no. 3, pp. 150–158, 2001.
  44. S. Jager and G. F. Wieczorek, “Landslide susceptibility in the Tully Valley Area, Finger Lakes region,” U.S. Geological Survey Open-File Report 94-615, 1994.
  45. R. L. Baum, A. F. Chleborad, and R. L. Schuster, “Landslides triggered by the winter 1996 –1997 stroms in the Puget Lowland,” Geological Survey Open-File Report 98-239, Washington, Wash, USA, 1998.
  46. H. B. Wang and K. Sassa, “Comparative evaluation of landslide susceptibility in Minamata area, Japan,” Environmental Geology, vol. 47, no. 7, pp. 956–966, 2005. View at Publisher · View at Google Scholar
  47. I. S. Evans, “What do terrain statistics really mean?” in Landform Monitoring, Modelling and Analysis, S. Lane, K. Richards, and J. Chandler, Eds., pp. 119–138, John Wiley & Sons, Chichester, UK, 1998.
  48. T. Behrens, “DEM Analysis Tool,” 2005, http://www.esri.com.
  49. H. J. Miller and J. Han, Geographic Data Mining and Knowledge Discovery, CRC Press, Boca Raton, Fla, USA, 2001.
  50. C.-F. Chien and L.-F. Chen, “Data mining to improve personnel selection and enhance human capital: a case study in high-technology industry,” Expert Systems with Applications, vol. 34, no. 1, pp. 280–290, 2008. View at Publisher · View at Google Scholar
  51. J. A. Swets, “Measuring the accuracy of diagnostic systems,” Science, vol. 240, pp. 1285–1293, 1988. View at Publisher · View at Google Scholar
  52. P. N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining, Pearson Education, Delhi, India, 2005.
  53. R. Bellazzi and B. Zupan, “Predictive data mining in clinical medicine: current issues and guidelines,” International Journal of Medical Informatics, vol. 77, no. 2, pp. 81–97, 2008. View at Publisher · View at Google Scholar · View at PubMed
  54. D. Delen, G. Walker, and A. Kadam, “Predicting breast cancer survivability: a comparison of three data mining methods,” Artificial Intelligence in Medicine, vol. 34, no. 2, pp. 113–127, 2005. View at Publisher · View at Google Scholar · View at PubMed
  55. H. Soysal, S. Sipahioglu, D. Kolcak, and Y. Altinok, “Turkiye ve Cevresinin Tarihsel Deprem Katalogu (MO 2100-MS 1900),” TUBITAK project Tbag 341, Istanbul, Turkey, 1981.
  56. S. Beguería, “Validation and evaluation of predictive models in hazard assessment and risk management,” Natural Hazards, vol. 37, no. 3, pp. 315–329, 2006. View at Publisher · View at Google Scholar