About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2010 (2010), Article ID 913147, 9 pages
http://dx.doi.org/10.1155/2010/913147
Research Article

Signal Processing and Sampling Method for Obtaining Time Series Corresponding to Higher Order Derivatives

1Department of Physics, Politehnica University, 313 Spl. Independentei, 060042 Bucharest, Romania
2Department of Informatics, Titu Maiorescu University, 187 Cl. Vacaresti, 040051 Bucharest, Romania

Received 27 January 2010; Accepted 19 February 2010

Academic Editor: Ming Li

Copyright © 2010 Andreea Sterian and Alexandru Toma. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Toma, “Practical test-functions generated by computer algorithms,” in Proceedings of International Conference on Computational Science and Its Applications (ICCSA '05), vol. 3482 of Lecture Notes in Computer Science, pp. 576–584, 2005.
  2. A. Sterian and G. Toma, “Possibilities for obtaining the derivative of a received signal using computer-driven second order oscillators,” in Proceedings of the International Conference on Computational Science and Its Applications (ICCSA '05), vol. 3482 of Lecture Notes in Computer Science, pp. 585–591, May 2005.
  3. W. R. Cawthorne and F. S. Jy-Jen, “Method of determining the derivative of an input signal,” US patent no. 7587442, Publication number: US 2005/0256919 A1, September 2009.
  4. M. Petrou and F. Faille, “An imaging architecture based on derivative estimation sensors,” in Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, vol. 5856 of Lecture Notes in Computer Science, pp. 3–18, Springer, Berlin, Germany, 2009. View at Publisher · View at Google Scholar
  5. G. Toma, “Specific differential equations for generating pulse sequences,” Mathematical Problems in Engineering, vol. 2010, Article ID 324818, 11 pages, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. J. J. Rushchitsky, C. Cattani, and E. V. Terletskaya, “Wavelet analysis of the evolution of a solitary wave in a composite material,” International Applied Mechanics, vol. 40, no. 3, pp. 311–318, 2004. View at Publisher · View at Google Scholar
  7. C. Cattani, “Harmonic wavelets towards the solution of nonlinear PDE,” Computers & Mathematics with Applications, vol. 50, no. 8-9, pp. 1191–1210, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  8. E. G. Bakhoum and C. Toma, “Relativistic short range phenomena and space-time aspects of pulse measurements,” Mathematical Problems in Engineering, vol. 2008, Article ID 410156, 20 pages, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. E. G. Bakhoum and C. Toma, “Mathematical transform of traveling-wave equations and phase aspects of quantum interaction,” Mathematical Problems in Engineering, vol. 2010, Article ID 695208, 15 pages, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. M. Li, “Fractal time series—a tutorial review,” Mathematical Problems in Engineering, vol. 2010, Article ID 157264, 26 pages, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  11. M. Li and W. Zhao, “Representation of a stochastic traffic bound,” to appear in IEEE Transactions on Parallel and Distributed Systems. View at Publisher · View at Google Scholar
  12. M. Li and S. C. Lim, “Modeling network traffic using generalized Cauchy process,” Physica A, vol. 387, no. 11, pp. 2584–2594, 2008. View at Publisher · View at Google Scholar
  13. F. Leon, S. Curteanu, C. Lisa, and N. Hurduc, “Machine learning methods used to predict the liquid-crystalline behavior of some copolyethers,” Molecular Crystals and Liquid Crystals, vol. 469, no. 1, pp. 1–22, 2007. View at Publisher · View at Google Scholar
  14. F. Leon, M. H. Zaharia, and D. Galea, “Emergent dynamic routing using intelligent agents in mobile computing,” Studies in Informatics and Control, vol. 17, no. 2, 2008.