`Mathematical Problems in EngineeringVolume 2011 (2011), Article ID 575679, 11 pageshttp://dx.doi.org/10.1155/2011/575679`
Research Article

## Generalized Jacobi Elliptic Function Solution to a Class of Nonlinear Schrödinger-Type Equations

1Department of Mathematics, Faculty of Science, Qassim University, Buraida 51452, Saudi Arabia
2Department of Mathematics, New Valley Faculty of Education, Assiut University, El-Kharga, New Valley 71516, Egypt

Received 17 December 2010; Accepted 10 February 2011

Copyright © 2011 Zeid I. A. Al-Muhiameed and Emad A.-B. Abdel-Salam. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. E. Fan and Y. C. Hon, “Generalized tanh method extended to special types of nonlinear equations,” Zeitschrift fur Naturforschung A, vol. 57, no. 8, pp. 692–700, 2002.
2. A. H. Bokhari, G. Mohammad, M. T. Mustafa, and F. D. Zaman, “Adomian decomposition method for a nonlinear heat equation with temperature dependent thermal properties,” Mathematical Problems in Engineering, vol. 2009, Article ID 926086, 12 pages, 2009.
3. A. Wazwaz, “The tanh method: exact solutions of the sine-Gordon and the sinh-Gordon equations,” Applied Mathematics and Computation, vol. 167, no. 2, pp. 1196–1210, 2005.
4. J.-H. He and X.-H. Wu, “Exp-function method for nonlinear wave equations,” Chaos, Solitons and Fractals, vol. 30, no. 3, pp. 700–708, 2006.
5. M. F. El-Sabbagh and A. T. Ali, “New exact solutions for (3+1)-dimensional Kadomtsev-Petviashvili equation and generalized (2+1)-dimensional Boussinesq equation,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 6, no. 2, pp. 151–162, 2005.
6. C. Dai and J. Zhang, “Jacobian elliptic function method for nonlinear differential-difference equations,” Chaos, Solitons and Fractals, vol. 27, no. 4, pp. 1042–1047, 2006.
7. M. F. El-Sabbagh, M. M. Hassan, and E. A.-B. Abdel-Salam, “Quasi-periodic waves and their interactions in the (2 + 1)-dimensional modified dispersive water-wave system,” Physica Scripta, vol. 80, pp. 15006–15014, 2009.
8. E. Fan, “Extended tanh-function method and its applications to nonlinear equations,” Physics Letters. A, vol. 277, no. 4-5, pp. 212–218, 2000.
9. I. A. Hassanien, R. A. Zait, and E. A.-B. Abdel-Salam, “Multicnoidal and multitravelling wave solutions for some nonlinear equations of mathematical physics,” Physica Scripta, vol. 67, no. 6, pp. 457–463, 2003.
10. Y. Ren and H. Zhang, “New generalized hyperbolic functions and auto-Bäcklund transformation to find new exact solutions of the (2+1)-dimensional NNV equation,” Physics Letters. A, vol. 357, no. 6, pp. 438–448, 2006.
11. E. A. B. Abdel-Salam, “Periodic structures based on the symmetrical lucas function of the (2+1)-dimensional dispersive long-wave system,” Zeitschrift fur Naturforschung A, vol. 63, no. 10-11, pp. 671–678, 2008.
12. E. A.-B. Abdel-Salam, “Quasi-periodic structures based on symmetrical Lucas function of (2+1)-dimensional modified dispersive water-wave system,” Communications in Theoretical Physics, vol. 52, no. 6, pp. 1004–1012, 2009.
13. E. A.-B. Abdel-Salam, “Quasi-periodic, periodic waves, and soliton solutions for the combined KdV-mKdV equation,” Zeitschrift fur Naturforschung A, vol. 64, no. 9-10, pp. 639–645, 2009.
14. E. A. B. Abdel-Salam and D. Kaya, “Application of new triangular functions to nonlinear partial differential equations,” Zeitschrift fur Naturforschung A, vol. 64, no. 1, pp. 1–7, 2009.
15. E. A.-B. Abdel-Salam and Z. I. A. Al-Muhiameed, “Generalized Jacobi elliptic function method and non-travelling wave solutions,” Nonlinear Science Letters A, vol. 1, no. 4, pp. 363–372, 2010.
16. H. F. Baker, Abelian Functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, UK, 1897.
17. P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Physicists, Springer, Berlin, Germany, 1954.
18. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis. An Introduction to the General Theory of Infinite Processes and of Analytic Functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, UK, 1996.
19. A. Borhanifar, M. M. Kabir, and L. Maryam Vahdat, “New periodic and soliton wave solutions for the generalized Zakharov system and (2+1)-dimensional Nizhnik-Novikov-Veselov system,” Chaos, Solitons and Fractals, vol. 42, no. 3, pp. 1646–1654, 2009.
20. J. L. Zhang and M. L. Wang, “Exact solutions to a class of nonlinear Schrödinger-type equations,” Pramana Journal of Physics, vol. 67, no. 6, pp. 1011–1022, 2006.
21. M. Florjańczyk and L. Gagnon, “Exact solutions for a higher-order nonlinear Schrödinger equation,” Physical Review A, vol. 41, no. 8, pp. 4478–4485, 1990.
22. D.-J. Huang, D.-S. Li, and H.-Q. Zhang, “Explicit and exact travelling wave solutions for the generalized derivative Schrödinger equation,” Chaos, Solitons and Fractals, vol. 31, no. 3, pp. 586–593, 2007.
23. S. Kumar and A. Hasegawa, “Quasi-soliton propagation in dispersion-managed optical fibers,” Optics Letters, vol. 22, no. 6, pp. 372–374, 1997.
24. H. W. Schürmann, “Traveling-wave solutions of the cubic-quintic nonlinear Schrödinger equation,” Physical Review E, vol. 54, no. 4, pp. 4312–4320, 1996.