Abstract

The surface waves propagation in generalized magneto-thermo-viscoelastic granular medium subjected to continuous boundary conditions has been investigated. In addition, it is also subjected to thermal boundary conditions. The solution of the more general equations are obtained for thermoelastic coupling. The frequency equation of Rayleigh waves is obtained in the form of a determinant containing a term involving the coefficient of friction of a granular media which determines Rayleigh waves velocity as a real part and the attenuation coefficient as an imaginary part, and the effects of rotation, magnetic field, initial stress, viscosity, and gravity field on Rayleigh waves velocity and attenuation coefficient of surface waves have been studied in detail. Dispersion curves are computed numerically for a specific model and presented graphically. Some special cases have also been deduced. The results indicate that the effect of rotation, magnetic field, initial stress, and gravity field is very pronounced.

1. Introduction

The dynamical problem in granular media of generalized magneto-thermoelastic waves has been studied in recent times, necessitated by its possible applications in soil mechanics, earthquake science, geophysics, mining engineering, and plasma physics, and so forth. The granular medium under consideration is a discontinuous one and is composed of numerous large or small grains. Unlike a continuous body each element or grain cannot only translate but also rotate about its center of gravity. This motion is the characteristic of the medium and has an important effect upon the equations of motion to produce internal friction. It was assumed that the medium contains so many grains that they will never be separated from each other during the deformation and that each grain has perfect thermoelasticity. The effect of the granular media on dynamics was pointed out by Oshima [1]. The dynamical problem of a generalized thermoelastic granular infinite cylinder under initial stress has been illustrated by El-Naggar [2]. Rayleigh wave propagation of thermoelasticity or generalized thermoelasticity was pointed out by Dawan and Chakraporty [3]. Rayleigh waves in a magnetoelastic material under the influence of initial stress and a gravity field were discussed by Abd-Alla et al. [4] and El-Naggar et al. [5].

Rayleigh waves in a thermoelastic granular medium under initial stress on the propagation of waves in granular medium are discussed by Ahmed [6]. Abd-Alla and Ahmed [7] discussed the problem of Rayleigh wave propagation in an orthotropic medium under gravity and initial stress. Magneto-thermoelastic problem in rotating nonhomogeneous orthotropic hollow cylinder under the hyperbolic heat conduction model is discussed by Abd-Alla and Mahmoud [8]. Wave propagation in a generalized thermoelastic solid cylinder of arbitrary cross-section is discussed by Venkatesan and Ponnusamy [9]. Some problems discussed the effect of rotation of different materials. Thermoelastic wave propagation in a rotating elastic medium without energy dissipation was studied by Roychoudhuri and Bandyopadhyay [10]. Sharma and Grover [11] studied the body wave propagation in rotating thermoelastic media. Thermal stresses in a rotating nonhomogeneous orthotropic hollow cylinder were discussed by El-Naggar et al. [12]. Abd-El-Salam et al. [13] investigated the numerical solution of magneto-thermoelastic problem nonhomogeneous isotropic material.

In this paper, the effect of magnetic field, rotation, thermal relaxation time, gravity field, viscosity, and initial stress on propagation of Rayleigh waves in a thermoelastic granular medium is discussed. General solution is obtained by using Lame’s potential. The frequency equation of Rayleigh waves is obtained in the form of a determinant. Some special cases have also been deduced. Dispersion curves are computed numerically for a specific model and presented graphically. The results indicate that the effect of rotation, magnetic field, initial stress, and gravity field are very pronounced.

2. Formulation of the Problem

Let us consider a system of orthogonal Cartesian axes, Oxyz, with the interface and the free surface of the granular layer resting on the granular half space of different materials being the planes 𝑧=𝐾 and 𝑧=0, respectively. The origin 𝑂 is any point on the free surface, the 𝑧-axis is positive along the direction towards the exterior of the half space, and the 𝑥-axis is positive along the direction of Rayleigh waves propagation. Both media are under initial compression stress 𝑃 along the 𝑥-direction and the primary magnetic field 𝐻0 acting on 𝑦-axis, as well as the gravity field and incremental thermal stresses, as shown in Figure 1. The state of deformation in the granular medium is described by the displacement vector 𝑈(𝑢,𝑜,𝑤) of the center of gravity of a grain and the rotation vector 𝜉(𝜉,𝜂,𝜁) of the grain about its center of gravity. The elastic medium is rotating uniformly with an angular velocity Ω=Ω𝑛, where 𝑛 is a unit vector representing the direction of the axis of rotation. The displacement equation of motion in the rotating frame has two additional terms, Ω×(Ω×𝑢) is the centripetal acceleration due to time varying motion only, and 2Ω×𝑢 is the Coriolis acceleration, and Ω=(0,Ω,0).

The electromagnetic field is governed by Maxwell equations, under the consideration that the medium is a perfect electric conductor taking into account the absence of the displacement current (SI) (see the work of Mukhopadhyay [14]): 𝐽=curl,𝜇𝑒𝜕𝜕𝑡=curl𝐸,div=0,div𝐸=0,𝐸=𝜇𝑒𝜕𝑢×𝐻,𝜕𝑡(2.1) where𝐻=curl𝑢×0,𝐻𝐻=0+𝐻,0=0,𝐻0,0,(2.2) where is the perturbed magnetic field over the primary magnetic field vector, 𝐸 is the electric intensity, 𝐽 is the electric current density, 𝜇𝑒 is the magnetic permeability, 𝐻0 is the constant primary magnetic field vector, and 𝑢 is the displacement vector.

The stress and stress couple may be taken to be nonsymmetric, that is, 𝜏𝑖𝑗𝜏𝑗𝑖, 𝑀𝑖𝑗𝑀𝑗𝑖. The stress tensor 𝜏𝑖𝑗 can be expressed as the sum of symmetric and antisymmetric tensors 𝜏𝑖𝑗=𝜎𝑖𝑗+𝜎𝑖𝑗,(2.3) where 𝜎𝑖𝑗=12𝜏𝑖𝑗+𝜏𝑗𝑖,𝜎𝑖𝑗=12𝜏𝑖𝑗𝜏𝑗𝑖.(2.4)

The symmetric tensor 𝜎𝑖𝑗=𝜎𝑗𝑖 is related to the symmetric strain tensor 𝑒𝑖𝑗=𝑒𝑗𝑖=12𝜕𝑢𝑖𝜕𝑥𝑗+𝜕𝑢𝑗𝜕𝑥𝑖.(2.5) The antisymmetric stress 𝜎𝑖𝑗 are given by𝜎23=𝐹𝜕𝜉𝜕𝑡,𝜎31=𝐹𝜕𝜂𝜕𝑡,𝜎12=𝐹𝜕𝜁𝜕𝑡,𝜎11=𝜎22=𝜎33=0,(2.6) where 𝐹 is the coefficient of friction between the individual grains. The stress couple 𝑀𝑖𝑗 is given by𝑀𝑖𝑗=𝑀𝜈𝑖𝑗,(2.7) where 𝑀 is the third elastic constant, 𝑀11,𝑀13,𝑀33, and so forth, are the components of the resultant acting on a surface.

The non-symmetric strain tensor 𝜈𝑖𝑗 is defined as𝜈11=𝜕𝜉𝜕𝑥,𝜈31=𝜕𝜉𝜕𝑧,𝜈33=𝜕𝜁𝜕𝑧,𝜈21=𝜈22=𝜈23𝜈=0,12=𝜕𝜔𝜕𝑥2+𝜂,𝜈32=𝜕𝜔𝜕𝑧2+𝜂,𝜈13=𝜕𝜁,𝜕𝑥(2.8) where 𝜔2=(1/2)((𝜕𝑢/𝜕𝑧)(𝜕𝑤/𝜕𝑥)).

The dynamic equation of motion, if the magnetic field and rotation are added, can be written as [15]𝜏𝑗𝑖,𝑗+𝐹𝑖=𝜌𝑢𝑖+Ω×Ω×𝑢𝑖+2Ω×𝑢𝑖,𝑖,𝑗=1,2,3.(2.9) The heat conduction equation is given by [16] 𝐾2𝜕𝑇=𝜌𝑠𝜕𝑡1+𝜏2𝜕𝜕𝑡𝑇+𝛾𝑇0𝜕𝜕𝑡1+𝜏2𝛿𝜕𝜕𝑡𝑢,(2.10) where 𝜌 is density of the material, 𝐾 is thermal conductivity, s is specific heat of the material per unit mass, 𝜏1,𝜏2 are thermal relaxation parameter, 𝛼𝑡 is coefficient of linear thermal expansion, 𝜆 and 𝜇 are Lame’s elastic constants, 𝜃 is the absolute temperature, 𝛾=𝛼𝑡(3𝜆+2𝜇), 𝑇0 is reference temperature solid, 𝑇 is temperature difference (𝜃𝑇0), 𝜏0 is the mechanical relaxation time due to the viscosity, and 𝜏𝑚=(1+𝜏0(𝜕/𝜕𝑡)).

The components of stress in generalized thermoelastic medium are given by𝜎11=𝜏𝑚(𝜆+2𝜇)+𝑝𝜕𝑢+𝜏𝜕𝑥𝑚𝜆+𝑃𝜕𝑤𝜕𝑧𝛾1+𝜏1𝜕𝜎𝜕𝑡𝑇,33=𝜏𝑚𝜆𝜕𝑢𝜕𝑥+𝜏𝑚(𝜆+2𝜇)𝜕𝑤𝜕𝑧𝛾1+𝜏1𝜕𝜎𝜕𝑡𝑇,13=𝜏𝑚𝜇𝜕𝑢+𝜕𝑧𝜕𝑤.𝜕𝑥(2.11) If we neglect the thermal relaxation time, then (2.11) tends to Nowacki [17] and Biot [18].

The Maxwell's electro-magnetic stress tensor 𝜏𝑖𝑗 is given by 𝜏𝑖𝑗=𝜇𝑒𝐻𝑖𝑗+𝐻𝑗𝑖𝐻𝑘𝑘𝛿𝑖𝑗,𝑖,𝑗=1,2,3,(2.12) which takes the form𝜏11=𝜇𝑒𝐻202𝜙,𝜏13=𝜏23=0,𝜏33=𝜇𝑒𝐻202𝜙,2𝜙=𝜕𝑢+𝜕𝑥𝜕𝑤𝜕𝑧.(2.13)

The dynamic equations of motion are𝜕𝜏11+𝜕𝑥𝜕𝜏31+𝑃𝜕𝑧2𝜕𝜔2𝜕𝑧𝜌𝑔𝜕𝑤𝜕𝑥+𝐹𝑥𝜕=𝜌2𝑢𝜕𝑡2+2Ω𝜕𝑤𝜕𝑡Ω2𝑢,𝜕𝜏12+𝜕𝑥𝜕𝜏32𝜕𝑧+𝐹𝑦=0,𝜕𝜏13+𝜕𝑥𝜕𝜏33+𝑃𝜕𝑧2𝜕𝜔2𝜕𝑥+𝜌𝑔𝜕𝑤𝜕𝑥+𝐹𝑧𝜕=𝜌2𝑤𝜕𝑡22Ω𝜕𝑢𝜕𝑡Ω2𝑤,(2.14) where 𝑔 is the Earth's gravity and𝐹=𝜇𝑒𝐻202𝜙,0,𝜇𝑒𝐻202𝜙,𝜏(2.15)23𝜏32+𝜕𝑀11+𝜕𝑥𝜕𝑀31𝜏𝜕𝑧=0,31𝜏13+𝜕𝑀12+𝜕𝑥𝜕𝑀32𝜏𝜕𝑧=0,12𝜏21+𝜕𝑀13+𝜕𝑥𝜕𝑀33𝜕𝑧=0.(2.16)

From (2.3)–(2.8) and (2.11), we have𝜏11=𝜏𝑚(𝜆+2𝜇)+𝑝𝜕𝑢+𝜏𝜕𝑥𝑚𝜆+𝑃𝜕𝑤𝜕𝑧𝛾1+𝜏1𝜕𝜏𝜕𝑡𝑇,33=𝜏𝑚𝜆𝜕𝑢𝜕𝑥+𝜏𝑚(𝜆+2𝜇)𝜕𝑤𝜕𝑧𝛾1+𝜏1𝜕𝜏𝜕𝑡𝑇,13=𝜏𝑚𝜇𝜕𝑢+𝜕𝑧𝜕𝑤𝜕𝑥+𝐹𝜕𝜂,𝜏𝜕𝑡12=𝐹𝜕𝜁,𝜏𝜕𝑡23=𝐹𝜕𝜉,𝑀𝜕𝑡11=𝑀𝜕𝜉𝜕𝑥,𝑀31=𝑀𝜕𝜉𝜕𝑧,𝑀33=𝑀𝜕𝜁𝜕𝑧,𝑀21=𝑀22=𝑀23𝑀=0,12𝜕=𝑀𝜔𝜕𝑥2+𝜂,𝑀32𝜕=𝑀𝜔𝜕𝑧2+𝜂,𝑀13=𝑀𝜕𝜁.𝜕𝑥(2.17) Substituting (2.17) into (2.14) and (2.16) tends to𝜏𝑚𝜕(𝜆+2𝜇)+𝑃2𝑢𝜕𝑥2+𝜏𝑚𝜕𝜆+𝑃2𝑤𝜕𝑥𝜕𝑧𝛾1+𝜏1𝜕𝜕𝑡𝜕𝑇𝜕𝑥+𝜏𝑚𝜇𝜕2𝑢𝜕𝑧2+𝜕2𝑤+𝑃𝜕𝑥𝜕𝑧2𝜕2𝑢𝜕𝑧2𝜕2𝑤𝜕𝑥𝜕𝑧𝜌𝑔𝜕𝑤𝜕𝜕𝑥+𝐹2𝜂𝜕𝑧𝜕𝑡+𝜇𝑒𝐻20𝜕2𝑢𝜕𝑥2+𝜕2𝑤𝜕𝜕𝑥𝜕𝑧=𝜌2𝑢𝜕𝑡2+2Ω𝜕𝑤𝜕𝑡Ω2𝑢,(2.18) then𝜏𝑚(𝜆+2𝜇)+𝑃+𝜇𝑒𝐻20𝜕2𝑢𝜕𝑥2+𝜏𝑚𝑃(𝜆+𝜇)+2+𝜇𝑒𝐻20𝜕2𝑤+𝜏𝜕𝑥𝜕𝑧𝑚𝑃𝜇+2𝜕2𝑢𝜕𝑧2𝛾1+𝜏1𝜕𝜕𝑡𝜕𝑇𝜕𝑥𝜌𝑔𝜕𝑤𝜕𝜕𝑥+𝐹2𝜂𝜕𝜕𝑧𝜕𝑡=𝜌2𝑢𝜕𝑡2+2Ω𝜕𝑤𝜕𝑡Ω2𝑢.(2.19)

Also,𝜕𝜕𝑡𝜕𝜁𝜕𝑥𝜕𝜉𝜏𝜕𝑧=0,(2.20)𝑚𝜇𝜕2𝑢+𝜕𝜕𝑥𝜕𝑧2𝑤𝜕𝑥2𝜕𝐹2𝜂𝜕𝑥𝜕𝑡+𝜏𝑚𝜆𝜕2𝑢𝜕𝑥𝜕𝑧+𝜏𝑚𝜕(𝜆+2𝜇)2𝑤𝜕𝑧2𝛾1+𝜏1𝜕𝜕𝑡𝜕𝑇+𝑃𝜕𝑧2𝜕2𝑢𝜕𝜕𝑥𝜕𝑧2𝑤𝜕𝑥2+𝜌𝑔𝜕𝑢𝜕𝑥+𝜇𝑒𝐻20𝜕2𝑢+𝜕𝜕𝑥𝜕𝑧2𝑤𝜕𝑧2𝜕=𝜌2𝑤𝜕𝑡22Ω𝜕𝑢𝜕𝑡Ω2𝑤,(2.21) then𝜏𝑚𝑃(𝜆+𝜇)+2+𝜇𝑒𝐻20𝜕2𝑢+𝜏𝜕𝑥𝜕𝑧𝑚𝑃𝜇2𝜕2𝑤𝜕𝑥2+𝜏𝑚(𝜆+2𝜇)+𝜇𝑒𝐻20𝜕2𝑤𝜕𝑧2𝛾1+𝜏1𝜕𝜕𝑡𝜕𝑇𝜕𝑧+𝜌𝑔𝜕𝑢𝜕𝜕𝑥𝐹2𝜂𝜕𝜕𝑥𝜕𝑡=𝜌2𝑤𝜕𝑡22Ω𝜕𝑢𝜕𝑡Ω2𝑤,(2.22) and, from (2.16), we have2𝜉𝑠2𝜕𝜉𝜕𝑡=0,(2.23)2𝜔2+𝜂𝑠2𝜕𝜂𝜕𝑡=0,(2.24)2𝜁𝑠2𝜕𝜁𝜕𝑡=0,(2.25) where 𝑠2=2𝐹𝑀.(2.26)

3. Solution of the Problem

By Helmholtz's theorem [19], the displacement vector 𝑢 can be written in the displacement potentials 𝜙 and 𝜓 form, as𝑢=grad𝜙+curl𝜓,𝜓=(0,𝜓,0),(3.1) which reduces to𝑢=𝜕𝜙𝜕𝑥𝜕𝜓𝜕𝑧,𝑤=𝜕𝜙+𝜕𝑧𝜕𝜓𝜕𝑥.(3.2)

Substituting (3.2) into (2.19), (2.22), and (2.24), the wave equations tend to𝛼22𝛾𝜙𝜌1+𝜏1𝜕𝜕𝑡𝑇𝑔𝜕𝜓=𝜕𝜕𝑥2𝜙𝜕𝑡2+2Ω𝜕𝜓𝜕𝑡Ω2𝛽𝜙,(3.3)22𝜓𝑠1𝜕𝜂𝜕𝑡+𝑔𝜕𝜙=𝜕𝜕𝑥2𝜓𝜕𝑡22Ω𝜕𝜙𝜕𝑡Ω2𝜓,(3.4)2𝜂𝑠2𝜕𝜂𝜕𝑡4𝜓=0,(3.5) where𝑠1=𝐹𝜌,𝛼2=𝜏𝑚(𝜆+2𝜇)+𝑃+𝜇𝑒𝐻20𝜌,𝛽2=2𝜏𝑚𝜇𝑃2𝜌.(3.6)

Substituting (3.2) into (2.10), we obtain𝐾2𝜕𝑇=𝜌𝑠𝜕𝑡1+𝜏2𝜕𝜕𝑡𝑇+𝛾𝑇0𝜕𝜕𝑡1+𝜏2𝛿𝜕𝜕𝑡2𝜙.(3.7)

From (3.3) and (3.7), by eliminating 𝑇, we obtain 21𝜒𝜕𝜕𝑡1+𝜏2𝜕𝛼𝜕𝑡22𝜙𝑔𝜕𝜓𝜕𝜕𝑥2𝜙𝜕𝑡22Ω𝜕𝜓𝜕𝑡+Ω2𝜙𝜕𝜀𝜕𝑡1+𝜏1𝜕𝜕𝑡1+𝜏2𝛿𝜕𝜕𝑡2𝜙=0,(3.8) where𝐾𝜒=𝛾𝜌𝑠,𝜀=2𝑇0𝜌𝐾.(3.9)

From (3.4) and (3.5) by eliminating 𝜂, we obtain 2𝑠2𝜕𝛽𝜕𝑡22𝜕𝜓2𝜓𝜕𝑡2+𝑔𝜕𝜙𝜕𝑥+2Ω𝜕𝜙𝜕𝑡+Ω2𝜓𝑠14𝜕𝜓𝜕𝑡=0.(3.10)

For a plane harmonic wave propagation in the 𝑥-direction, we assume𝜙=𝜙1𝑒𝑖𝑘(𝑥𝑐𝑡),𝜓=𝜓1𝑒𝑖𝑘(𝑥𝑐𝑡),𝜉(3.11)(𝜉,𝜂,𝜁)=1,𝜂1,𝜁1𝑒𝑖𝑘(𝑥𝑐𝑡).(3.12)

From (3.12) into (2.20), (2.23), and (2.25), we get𝐷𝜉1𝑖𝑘𝜁1𝐷=0,(3.13)2𝜉1+𝑞2𝜉1𝐷=0,(3.14)2𝜁1+𝑞2𝜁1=0,(3.15) where𝑞2=𝑖𝑘𝑐𝑠2𝑘2𝑑,𝐷.𝑑𝑧(3.16)

The solution of (3.14) and (3.15) takes the form𝜉1=𝐴1𝑒𝑖𝑞𝑧+𝐴2𝑒𝑖𝑞𝑧,𝜁1=𝐵1𝑒𝑖𝑞𝑧+𝐵2𝑒𝑖𝑞𝑧,(3.17) where 𝐴1,𝐴2,𝐵1, and 𝐵2 are arbitrary constants.

From (3.13) and (3.17), we obtain 𝑞𝐴1𝑒𝑖𝑞𝑧𝐴2𝑒𝑖𝑞𝑧𝐵𝑘1𝑒𝑖𝑞𝑧+𝐵2𝑒𝑖𝑞𝑧=0,(3.18) then𝑞𝐴1𝑘𝐵1=0,𝑞𝐴2𝑘𝐵2=0𝐴𝑗=(1)𝑗1𝑘𝑞𝐵𝑗,𝑗=1,2.(3.19)

Substituting (3.11) into (3.8) and (3.10), we obtain𝛼2𝐷4+𝐺1𝐷2+𝐺2𝜙1𝐺3𝐷2+𝐺4𝜓1𝑅=0,1𝐷4+𝑅2𝐷2+𝑅3𝜓1+𝑅4𝐷2+𝑅5𝜙1=0,(3.20) whereΓ0=1𝑖𝑘𝑐𝜏0,Γ1=1𝑖𝑘𝑐𝜏1,Γ2=1𝑖𝑘𝑐𝜏2,Γ3=1𝑖𝑘𝑐𝜏2𝛼𝛿,2=Γ0(𝜆+2𝜇)+𝑃+𝜇𝑒𝐻20𝜌,𝛽2=2Γ0𝜇𝑃.𝐺2𝜌1=𝑘2𝑐22𝛼2+𝑖𝑘𝑐𝜒𝛼2Γ2+𝜒𝜀Γ1Γ3+Ω2,𝐺2=𝑘4𝛼2𝑐2+𝑖𝑘𝑐Γ2𝜒𝑘21𝛼2+Ω2𝑘2Ω2+𝑖𝑘𝜀𝑐Γ1Γ3,𝐺3=𝑖𝑘(𝑔2Ω𝑐),𝐺4=(𝑔2Ω𝑐)𝑖𝑘3+𝑘2𝑐Γ2𝜒,𝑅1=𝛽2+𝑖𝑘𝑐𝑠1,𝑅2=𝑘2𝑐22𝛽2𝑠+𝑖𝑘𝑐2𝛽22𝑘2𝑠1+Ω2,𝑅3=𝑘2𝑘2𝑖𝑘𝑐𝑠2𝛽2𝑐2𝑠+𝑖𝑘𝑐2Ω2+𝑘4𝑠1,𝑅4=𝑖𝑘(𝑔2Ω𝑐),𝑅5=(2Ω𝑐𝑔)𝑖𝑘3𝑘2𝑐𝑠2.(3.21)

The solution of (3.20) takes the form𝜙1=4𝑗=1𝐶𝑗𝑒𝑖𝑘𝑁𝑗𝑧+𝐷𝑗𝑒𝑖𝑘𝑁𝑗𝑧,𝜓1=4𝑗=1𝐸𝑗𝑒𝑖𝑘𝑁𝑗𝑧+𝐹𝑗𝑒𝑖𝑘𝑁𝑗𝑧,(3.22) where the constants 𝐸𝑗 and 𝐹𝑗 are related to the constants 𝐶𝑗 and 𝐷𝑗 in the form𝐸𝑗=𝑚𝑗𝐶𝑗,𝐹𝑗=𝑚𝑗𝐷𝑗𝑚,𝑗=1,2,3,4,𝑗=1(𝑔2Ω𝑐)𝑖𝑘𝑁2𝑗𝑖𝑘𝜀Γ2×𝛼/𝜒2𝑘2𝑁4𝑗𝑘2𝑐22𝛼2+𝑖𝑘𝑐𝜒𝛼2Γ2+𝜒𝜀Γ1Γ3+Ω2𝑁2𝑗+𝑖𝑘𝑐Γ2𝜒1𝛼2+Ω2𝑘2Ω2+𝑖𝑘𝜀𝑐Γ1Γ3.(3.23) Substituting (3.22) into (3.11), we obtain 𝜙=4𝑗=1𝐶𝑗𝑒𝑖𝑘𝑁𝑗𝑧+𝐷𝑗𝑒𝑖𝑘𝑁𝑗𝑧𝑒𝑖𝑘(𝑥𝑐𝑡),𝜓=4𝑗=1𝐸𝑗𝑒𝑖𝑘𝑁𝑗𝑧+𝐹𝑗𝑒𝑖𝑘𝑁𝑗𝑧𝑒𝑖𝑘(𝑥𝑐𝑡),(3.24) and values of displacement components 𝑢 and 𝑤 are𝑢=𝑖𝑘4𝑗=11𝑁𝑗𝑚𝑗𝐶𝑗𝑒𝑖𝑘𝑁𝑗𝑧+1+𝑁𝑗𝑚𝑗𝐷𝑗𝑒𝑖𝑘𝑁𝑗𝑧𝑒𝑖𝑘(𝑥𝑐𝑡),𝑤=𝑖𝑘4𝑗=1𝑁𝑗+𝑚𝑗𝐶𝑗𝑒𝑖𝑘𝑁𝑗𝑧+𝑚𝑗𝑁𝑗𝐷𝑗𝑒𝑖𝑘𝑁𝑗𝑧𝑒𝑖𝑘(𝑥𝑐𝑡),(3.25) where 𝑁1,𝑁2,𝑁3, and 𝑁4 are taken to be the complex roots of the following equation𝑁8+𝑡1𝑁6+𝑡2𝑁4+𝑡3𝑁2+𝑡4=0,(3.26) where 𝑡1=𝑘2𝛼2𝑐22𝛼2+𝑖𝑘𝑐𝛼2𝜒𝛼2Γ2+𝜒𝜀Γ1Γ3+Ω2+1𝛽2+𝑖𝑘𝑐𝑠1×𝑘2𝑐22𝛽2𝑠+𝑖𝑘𝑐2𝛽22𝑘2𝑠1+Ω2,𝑡(3.27)2=1𝛼2𝑘4𝛼2𝑐2+𝑖𝑘𝑐Γ2𝜒𝑘21𝛼2+Ω2𝑘2Ω2+𝑖𝑘𝜀𝑐Γ1Γ3+1𝛼2𝛽2+𝑖𝑘𝑐𝑠1𝑘2𝑐22𝛽2𝑠+𝑖𝑘𝑐2𝛽22𝑘2𝑠1+Ω2×𝑘2𝑐22𝛼2+𝑖𝑘𝑐𝜒𝛼2Γ2+𝜒𝜀Γ1Γ3+Ω2+1𝛽2+𝑖𝑘𝑐𝑠1𝑘2𝑘2𝑖𝑘𝑐𝑠2𝛽2𝑐2𝑠+𝑖𝑘𝑐2Ω2+𝑘4𝑠11𝛼2𝛽2+𝑖𝑘𝑐𝑠1𝑘2(𝑔2Ω𝑐)2,𝑡(3.28)3=1𝛼2𝛽2+𝑖𝑘𝑐𝑠1×𝑘2𝑐22𝛽2𝑠+𝑖𝑘𝑐2𝛽22𝑘2𝑠1+Ω2×𝑘4𝛼2𝑐2+𝑖𝑘𝑐Γ2𝜒𝑘21𝛼2+Ω2𝑘2Ω2+𝑖𝑘𝜀𝑐Γ1Γ3+𝑘2𝑘2𝑖𝑘𝑐𝑠2𝛽2𝑐2𝑠+𝑖𝑘𝑐2Ω2+𝑘4𝑠1×𝑘2𝑐22𝛼2+𝑖𝑘𝑐𝜒𝛼2Γ2+𝜒𝜀Γ1Γ3+Ω2𝑖𝑘(𝑔2Ω𝑐)2𝑖𝑘3+𝑘2𝑐Γ2𝜒𝑖𝑘3(𝑔2Ω𝑐)2𝑖𝑘𝑐𝑠2,𝑡(3.29)4=1𝛼2𝛽2×𝑘+𝑖𝑘𝑐𝑠2𝑘2𝑖𝑘𝑐𝑠2𝛽2𝑐2𝑠+𝑖𝑘𝑐2Ω2+𝑘4𝑠1×[]+𝑖𝑘(𝑔2Ω𝑐)(2Ω𝑐𝑔)2𝑖𝑘3𝑘2𝑐𝑠2𝑖𝑘3+𝑘2𝑐Γ2𝜒.(3.30)

From (3.4), (3.11), (3.12), (3.22), and (3.23), we obtain 𝜂1=4𝑗=11𝑖𝑘𝑐𝑠1𝑘2𝛽2𝑚𝑗1+𝑁2𝑗𝑚𝑗𝑘2𝑐2+Ω2×𝐶+𝑖𝑘(2Ω𝑐𝑔)𝑗𝑒𝑖𝑘𝑁𝑗𝑧+𝐷𝑗𝑒𝑖𝑘𝑁𝑗𝑧.(3.31)

Using (3.22) and (3.11) into (3.3), we obtain𝜌𝑇=𝛾Γ14𝑗=1𝛼2𝑘21+𝑁2𝑗+𝑘2𝑐2𝑖𝑘𝑔𝑚𝑗𝐶𝑗𝑒𝑖𝑘𝑁𝑗𝑧+𝐷𝑗𝑒𝑖𝑘𝑁𝑗𝑧𝑒𝑖𝑘(𝑥𝑐𝑡).(3.32)

With the lower medium, we use the symbols with primes, for 𝜉1,𝜁1,𝜂1,𝑇,𝜙,𝜓, and 𝑞, for 𝑧>𝐾,𝜉1𝑘=𝑞𝐵2𝑒𝑖𝑞𝑧,𝜁1=𝐵2𝑒𝑖𝑞𝑧,𝜂1=4𝑗=11𝑖𝑘𝑐𝑠1𝑘2𝛽2𝑚𝑗1+𝑁𝑗2𝑚𝑗𝑘2𝑐2+Ω2+𝑖𝑘2Ω𝐷𝑐𝑔𝑗𝑒𝑖𝑘𝑁𝑗𝑧,𝑇=𝜌𝛾Γ14𝑗=1𝛼2𝑘21+𝑁𝑗2+𝑘2𝑐2𝑖𝑘𝑔𝑚𝑗𝐷𝑗𝑒𝑖𝑘𝑁𝑗𝑧𝑒𝑖𝑘(𝑥𝑐𝑡),𝜙=4𝑗=1𝐷𝑗𝑒𝑖𝑘𝑁𝑗𝑧𝑒𝑖𝑘(𝑥𝑐𝑡),𝜓=4𝑗=1𝐹𝑗𝑒𝑖𝑘𝑁𝑗𝑧𝑒𝑖𝑘(𝑥𝑐𝑡).(3.33)

4. Boundary Conditions and Frequency Equation

In this section, we obtain the frequency equation for the boundary conditions which are specific to the interface 𝑧=𝐾, that is,(i)𝑢=𝑢, (ii)𝑤=𝑤, (iii)𝜉=𝜉, (iv)𝜂=𝜂, (v)𝜁=𝜁, (vi)𝑀33=𝑀33, (vii)𝑀31=𝑀31, (viii)𝑀32=𝑀32, (ix)𝜏33+𝜏33=𝜏33+𝜏33(x)𝜏31+𝜏31=𝜏31+𝜏31, (xi)𝜏32+𝜏32=𝜏32+𝜏32, (xii)𝑇=𝑇, (xiii)(𝜕𝑇/𝜕𝑧)+𝜃𝑇=(𝜕𝑇/𝜕𝑧)+𝜃𝑇.

The boundary conditions on the free surface 𝑧=0 are(xiv)𝑀33=0, (xv)𝑀31=0, (xvi)𝑀32=0, (xvii)𝜏33+𝜏33=0, (xviii)𝜏31+𝜏31=0, (xix)𝜏32+𝜏32=0, (xx)(𝜕𝑇/𝜕𝑧)+𝜃𝑇=0.

From conditions (iii), (v), (vi), and (vii), we obtain𝐵1𝑒𝑖𝑞K𝐵2𝑒𝑖𝑞K=𝐵2𝑒𝑖𝑞K,𝐵1𝑒𝑖𝑞K+𝐵2𝑒𝑖𝑞K=𝐵2𝑒𝑖𝑞K,𝑀𝐵1𝑒𝑖𝑞K𝐵2𝑒𝑖𝑞K=𝑀𝐵2𝑒𝑖𝑞K,𝑀𝐵1𝑒𝑖𝑞K+𝐵2𝑒𝑖𝑞K=𝑀𝐵2𝑒𝑖𝑞K.(4.1) Hence, 𝐵1=𝐵2=𝐵2=0,𝜉=𝜁=𝜉=𝜁=0.(4.2)

The other significant boundary conditions are responsible for the following relations:(i)4𝑗=11𝑁𝑗𝑚𝑗𝐶𝑗𝑒𝑖𝑘𝑁𝑗𝐾+1+𝑁𝑗𝑚𝑗𝐷𝑗𝑒𝑖𝑘𝑁𝑗𝐾1+𝑁𝑗𝑚𝑗𝐷𝑗𝑒𝑖𝑘𝑁𝑗𝐾=0,(4.3)(ii)4𝑗=1𝑁𝑗+𝑚𝑗𝐶𝑗𝑒𝑖𝑘𝑁𝑗𝐾+𝑚𝑗𝑁𝑗𝐷𝑗𝑒𝑖𝑘𝑁𝑗𝐾𝑚𝑗𝑁𝑗𝐷𝑗𝑒𝑖𝑘𝑁𝑗𝐾=0,(4.4)(iv)4𝑗=11𝑐𝑠1𝑘2𝛽2𝑚𝑗1+𝑁2𝑗𝑚𝑗𝑘2𝑐2+Ω2×𝐶+𝑖𝑘(2Ω𝑐𝑔)𝑗𝑒𝑖𝑘𝑁𝑗𝐾+𝐷𝑗𝑒𝑖𝑘𝑁𝑗𝐾4𝑗=11𝑐𝑠1𝑘2𝛽2𝑚𝑗1+𝑁𝑗2𝑚𝑗𝑘2𝑐2+Ω2+𝑖𝑘2Ω𝐷𝑐𝑔𝑗𝑒𝑖𝑘𝑁𝑗𝐾=0,(4.5)(viii)𝑀𝑁𝑗4𝑗=1𝑘2𝑚𝑗𝑁2𝑗+1+1𝑖𝑘𝑐𝑠1𝑘2𝛽2𝑚𝑗1+𝑁2𝑗𝑚𝑗𝑘2𝑐2+Ω2×𝐶+𝑖𝑘(2Ω𝑐𝑔)𝑗𝑒𝑖𝑘𝑁𝑗𝐾𝐷𝑗𝑒𝑖𝑘𝑁𝑗𝐾+𝑀𝑁𝑗4𝑗=1𝑘2𝑚𝑗𝑁𝑗2+1+1𝑖𝑘𝑐𝑠1×𝑘2𝛽2𝑚𝑗1+𝑁𝑗2𝑚𝑗𝑘2𝑐2+Ω2+𝑖𝑘2Ω𝐷𝑐𝑔𝑗𝑒𝑖𝑘𝑁𝑗𝐾=0,(4.6)(ix)4𝑗=1Γ0𝜆+𝜇𝑒𝐻201𝑁𝑗𝑚𝑗+Γ0(𝜆+2𝜇)+𝜇𝑒𝐻20𝑁2𝑗+𝑚𝑗𝑁𝑗×𝐶𝑗𝑒𝑖𝑘𝑁𝑗𝐾+Γ0𝜆+𝜇𝑒𝐻201+𝑁𝑗𝑚𝑗+Γ0(𝜆+2𝜇)+𝜇𝑒𝐻20𝑁2𝑗𝑚𝑗𝑁𝑗×𝐷𝑗𝑒𝑖𝑘𝑁𝑗𝐾+𝜌𝛼21+𝑁2𝑗+𝑐2𝑖𝑔𝑘𝑚𝑗𝐶𝑗𝑒𝑖𝑘𝑁𝑗𝐾+𝐷𝑗𝑒𝑖𝑘𝑁𝑗𝐾Γ0𝜆+𝜇𝑒𝐻201+𝑁𝑗𝑚𝑗+Γ0𝜆+2𝜇+𝜇𝑒𝐻20𝑁𝑗2𝑚𝑗𝑁𝑗𝐷𝑗𝑒𝑖𝑘𝑁𝑗𝐾𝜌𝛼21+𝑁𝑗2+𝑐2𝑖𝑔𝑘𝑚𝑗𝐷𝑗𝑒𝑖𝑘𝑁𝑗𝐾=0,(4.7)(x)4𝑗=12𝑘2Γ0𝜇𝑁𝑗𝐶𝑗𝑒𝑖𝑘𝑁𝑗𝐾𝐷𝑗𝑒𝑖𝑘𝑁𝑗𝐾+𝑘2Γ0𝜇𝑚𝑗1𝑁2𝑗+𝐹𝑠1𝑘2𝛽2𝑚𝑗1+𝑁2𝑗𝑚𝑗𝑘2𝑐2+Ω2×𝐶+𝑖𝑘(2Ω𝑐𝑔)𝑗𝑒𝑖𝑘𝑁𝑗𝐾+𝐷𝑗𝑒𝑖𝑘𝑁𝑗𝐾2𝑘2Γ0𝜇𝑁𝑗𝐷𝑗𝑒𝑖𝑘𝑁𝑗𝐾𝑘2Γ0𝜇𝑚𝑗1𝑁𝑗2+𝐹𝑠1𝑘2𝛽2𝑚𝑗1+𝑁𝑗2𝑚𝑗𝑘2𝑐2+Ω2+𝑖𝑘2Ω𝑐𝑔×𝐷𝑗𝑒𝑖𝑘𝑁𝑗𝐾=0,(4.8)(xii)4𝑗=1𝜌𝛾𝛼2𝑘2𝑁2𝑗+1+𝑘2𝑐2𝑖𝑔𝑘𝑚𝑗𝐶𝑗𝑒𝑖𝑘𝑁𝑗𝐾+𝐷𝑗𝑒𝑖𝑘𝑁𝑗𝐾𝜌𝛾𝛼2𝑘2𝑁𝑗2+1+𝑘2𝑐2𝑖𝑔𝑘𝑚𝑗𝐷𝑗𝑒𝑖𝑘𝑁𝑗𝐾=0,(4.9)(xiii)4𝑗=1𝜌𝛾𝛼2𝑘2𝑁2𝑗+1+𝑘2𝑐2𝑖𝑔𝑘𝑚𝑗𝜃+𝑖𝑘𝑁𝑗𝐶𝑗𝑒𝑖𝑘𝑁𝑗𝐾+𝜃𝑖𝑘𝑁𝑗𝐷𝑗𝑒𝑖𝑘𝑁𝑗𝐾𝜌𝛾𝛼2𝑘2𝑁𝑗2+1+𝑘2𝑐2𝑖𝑔𝑘𝑚𝑗×𝜃𝑖𝑘𝑁𝑗𝐷𝑗𝑒𝑖𝑘𝑁𝑗𝐾=0,(4.10)(xvi)𝑀𝑁𝑗4𝑗=1𝑘2𝑚𝑗𝑁2𝑗+1+1𝑖𝑘𝑐𝑠1𝑘2𝛽2𝑚𝑗1+𝑁2𝑗𝑚𝑗𝑘2𝑐2+Ω2×𝐶+𝑖𝑘(2Ω𝑐𝑔)𝑗𝐷𝑗=0,(4.11)(xvii)4𝑗=1Γ0𝜆+𝜇𝑒𝐻201𝑁𝑗𝑚𝑗+Γ0(𝜆+2𝜇)+𝜇𝑒𝐻20𝑁2𝑗+𝑚𝑗𝑁𝑗𝐶𝑗+Γ0𝜆+𝜇𝑒𝐻201+𝑁𝑗𝑚𝑗+Γ0(𝜆+2𝜇)+𝜇𝑒𝐻20𝑁2𝑗𝑚𝑗𝑁𝑗𝐷𝑗+𝜌𝛼21+𝑁2𝑗+𝑐2𝑖𝑔𝑘𝑚𝑗𝐶𝑗+𝐷𝑗=0,(4.12)(xviii)4𝑗=12𝑘2Γ0𝜇𝑁𝑗𝐶𝑗𝐷𝑗+𝑘2Γ0𝜇𝑚𝑗1𝑁2𝑗+𝐹𝑠1𝑘2𝛽2𝑚𝑗1+𝑁2𝑗𝑚𝑗𝑘2𝑐2+Ω2×𝐶+𝑖𝑘(2Ω𝑐𝑔)𝑗+𝐷𝑗=0,(4.13)(xx)4𝑗=1𝛼2𝑘2𝑁2𝑗+1+𝑘2𝑐2𝑖𝑔𝑘𝑚𝑗𝜃+𝑖𝑘𝑁𝑗𝐶𝑗+𝜃𝑖𝑘𝑁𝑗𝐷𝑗=0.(4.14)

5. Special Cases and Discussion

5.1. The Magnetic Field, Initial Stress, and Thermal Relaxation Time Are Neglected

In this case (i.e., 𝐻0=0,𝑝=0, and 𝜏1=𝜏2=0), (3.26) tends to 𝑉8+1𝑉6+2𝑉4+3𝑉2+4=0,(5.1) where𝛼2=Γ0(𝜆+2𝜇)𝜌,𝛽2=Γ0𝜇𝜌,𝑚𝑗=1(𝑔2Ω𝑐)𝑖𝑘𝑉2𝑗×𝛼𝑖𝑘(𝜀/𝜒)2𝑘2𝑉4𝑗𝑘2𝑐22𝛼2+𝑖𝑘𝑐𝜒𝛼2+𝜒𝜀+Ω2𝑉2𝑗+𝑖𝑘𝑐𝜒1𝛼2+Ω2𝑘2Ω2,+𝑖𝑘𝜀𝑐1=𝑘2𝛼2𝑐22𝛼2+𝑖𝑘𝑐𝛼2𝜒𝛼2+𝜒𝜀+Ω2+1𝛽2+𝑖𝑘𝑐𝑠1×𝑘2𝑐22𝛽2𝑠+𝑖𝑘𝑐2𝛽22𝑘2𝑠1+Ω2,2=1𝛼2𝑘4𝛼2𝑐2+𝑖𝑘𝑐𝜒𝑘21𝛼2+Ω2𝑘2Ω2+1+𝑖𝑘𝜀𝑐𝛼2𝛽2+𝑖𝑘𝑐𝑠1𝑘2𝑐22𝛽2𝑠+𝑖𝑘𝑐2𝛽22𝑘2𝑠1+Ω2×𝑘2𝑐22𝛼2+𝑖𝑘𝑐𝜒𝛼2+𝜒𝜀+Ω2+1𝛽2+𝑖𝑘𝑐𝑠1𝑘2𝑘2𝑖𝑘𝑐𝑠2𝛽2𝑐2𝑠+𝑖𝑘𝑐2Ω2+𝑘4𝑠11𝛼2𝛽2+𝑖𝑘𝑐𝑠1𝑘2(𝑔2Ω𝑐)2,3=1𝛼2𝛽2+𝑖𝑘𝑐𝑠1𝑘2𝑐22𝛽2𝑠+𝑖𝑘𝑐2𝛽22𝑘2𝑠1+Ω2×𝑘4𝛼2𝑐2+𝑖𝑘𝑐𝜒𝑘21𝛼2+Ω2𝑘2Ω2+𝑘+𝑖𝑘𝜀𝑐2𝑘2𝑖𝑘𝑐𝑠2𝛽2𝑐2𝑠+𝑖𝑘𝑐2Ω2+𝑘4𝑠1×𝑘2𝑐22𝛼2+𝑖𝑘𝑐𝜒𝛼2+𝜒𝜀+Ω2𝑖𝑘(𝑔2Ω𝑐)2𝑖𝑘3+𝑘2𝑐𝜒𝑖𝑘3(𝑔2Ω𝑐)2𝑖𝑘𝑐𝑠2,4=1𝛼2𝛽2𝑘+𝑖𝑘𝑐𝑠2𝑘2𝑖𝑘𝑐𝑠2𝛽2𝑐2𝑠+𝑖𝑘𝑐2Ω2+𝑘4𝑠1×[]+(𝑖𝑘(𝑔2Ω𝑐)2Ω𝑐𝑔)2𝑖𝑘3𝑘2𝑐𝑠2𝑖𝑘3+𝑘2𝑐𝜒.(5.2)

Also, 𝜂1=4𝑗=11𝑖𝑘𝑐𝑠1𝑘2𝛽2𝑚𝑗1+𝑉2𝑗𝑚𝑗𝑘2𝑐2+Ω2×𝐶+𝑖𝑘(2Ω𝑐𝑔)𝑗𝑒𝑖𝑘𝑉𝑗𝑧+𝐷𝑗𝑒𝑖𝑘𝑉𝑗𝑧.𝜌𝑇=𝛾4𝑗=1𝛼2𝑘21+𝑉2𝑗+𝑘2𝑐2𝑖𝑘𝑔𝑚𝑗𝐶𝑗𝑒𝑖𝑘𝑉𝑗𝑧+𝐷𝑗𝑒𝑖𝑘𝑉𝑗𝑧𝑒𝑖𝑘(𝑥𝑐𝑡),𝜉1𝑘=𝑞𝐵2𝑒𝑖𝑞𝑧,𝜁1=𝐵2𝑒𝑖𝑞𝑧,𝜂1=4𝑗=11𝑖𝑘𝑐𝑠1𝑘2𝛽2𝑚𝑗1+𝑉𝑗2𝑚𝑗𝑘2𝑐2+Ω2+𝑖𝑘2Ω𝐷𝑐𝑔𝑗𝑒𝑖𝑘𝑉𝑗𝑧,𝑇=𝜌𝛾4𝑗=1𝛼2𝑘21+𝑉𝑗2+𝑘2𝑐2𝑖𝑘𝑔𝑚𝑗𝐷𝑗𝑒𝑖𝑘𝑉𝑗𝑧𝑒𝑖𝑘(𝑥𝑐𝑡),𝜙1=4𝑗=1𝐷𝑗𝑒𝑖𝑘𝑉𝑗𝑧,𝜓1=4𝑗=1𝐹𝑗𝑒𝑖𝑘𝑉𝑗𝑧,(5.3) Using the boundary conditions, we obtain𝑑11𝑑12𝑑18𝑑15𝑑16𝑑18𝑑21𝑑22𝑑28𝑑25𝑑26𝑑28𝑑121𝑑122𝑑128𝑑125𝑑126𝑑128𝐶1𝐶2𝐶3𝐶4𝐷1𝐷2𝐷3𝐷4𝐷1𝐷2𝐷3𝐷4=[0],(5.4) where𝑑1𝑗=1𝑉𝑗𝑚𝑗𝐶𝑗𝑒𝑖𝑘𝑉𝑗Κ+1+𝑉𝑗𝑚𝑗𝐷𝑗𝑒𝑖𝑘𝑉𝑗Κ,𝑑1𝑗=1+𝑉𝑗𝑚𝑗𝐷𝑗𝑒𝑖𝑘𝑉𝑗Κ,𝑑2𝑗=𝑉𝑗+𝑚𝑗𝐶𝑗𝑒𝑖𝑘𝑉𝑗Κ+𝑚𝑗𝑉𝑗𝐷𝑗𝑒𝑖𝑘𝑉𝑗Κ,𝑑2𝑗=𝑚𝑗𝑉𝑗𝐷𝑗𝑒𝑖𝑘𝑉𝑗Κ,𝑑3𝑗=1𝑐𝑠1𝑘2𝛽2𝑚𝑗1+𝑉2𝑗𝑚𝑗𝑘2𝑐2+Ω2𝐶+𝑖𝑘(2Ω𝑐𝑔)𝑗𝑒𝑖𝑘𝑉𝑗𝑧+𝐷𝑗𝑒𝑖𝑘𝑉𝑗𝑧,𝑑3𝑗=1𝑐𝑠1𝑘2𝛽2𝑚𝑗1+𝑉𝑗2𝑚𝑗𝑘2𝑐2+Ω2𝐷+𝑖𝑘(2Ω𝑐𝑔)𝑗𝑒𝑖𝑘𝑉𝑗𝑧,𝑑4𝑗=𝑀𝑉𝑗𝑘2𝑚𝑗𝑉2𝑗+1+1𝑖𝑘𝑐𝑠1𝑘2𝛽2𝑚𝑗1+𝑉2𝑗𝑚𝑗𝑘2𝑐2+Ω2×𝐶+𝑖𝑘(2Ω𝑐𝑔)𝑗𝑒𝑖𝑘𝑉𝑗𝐾𝐷𝑗𝑒𝑖𝑘𝑉𝑗𝐾,𝑑4𝑗=𝑀𝑉𝑗𝑘2𝑚𝑗𝑉𝑗2+1+1𝑖𝑘𝑐𝑠1𝑘2𝛽2𝑚𝑗1+𝑉𝑗2𝑚𝑗𝑘2𝑐2+Ω2+𝑖𝑘(2Ω𝑐𝑔)×𝐷𝑗𝑒𝑖𝑘𝑉𝑗𝐾,𝑑5𝑗=Γ0𝜆1𝑉𝑗𝑚𝑗+Γ0𝑉(𝜆+2𝜇)2𝑗+𝑚𝑗𝑉𝑗𝐶𝑗𝑒𝑖𝑘𝑉𝑗𝐾+Γ0𝜆1+𝑉𝑗𝑚𝑗+Γ0(𝑉𝜆+2𝜇)2𝑗𝑚𝑗𝑉𝑗𝐷𝑗𝑒𝑖𝑘𝑉𝑗𝐾+𝜌𝛼21+𝑉2𝑗+𝑐2𝑖𝑔𝑘𝑚𝑗𝐶𝑗𝑒𝑖𝑘𝑉𝑗𝐾+𝐷𝑗𝑒𝑖𝑘𝑉𝑗𝐾,𝑑5𝑗=Γ0𝜆1+𝑉𝑗𝑚𝑗+Γ0𝜆+2𝜇𝑉𝑗2𝑚𝑗𝑉𝑗𝐷𝑗𝑒𝑖𝑘𝑉𝑗𝐾+𝜌𝛼21+𝑉𝑗2+𝑐2𝑖𝑔𝑘𝑚𝑗×𝐷𝑗𝑒𝑖𝑘𝑉𝑗𝐾,𝑑6𝑗=2𝑘2Γ0𝜇𝑉𝑗𝐶𝑗𝑒𝑖𝑘𝑉𝑗𝐾𝐷𝑗𝑒𝑖𝑘𝑉𝑗𝐾+𝑘2Γ0𝜇𝑚𝑗1𝑉2𝑗+𝐹𝑠1𝑘2𝛽2𝑚𝑗1+𝑉2𝑗𝑚𝑗𝑘2𝑐2+Ω2×𝐶+𝑖𝑘(2Ω𝑐𝑔)𝑗𝑒𝑖𝑘𝑉𝑗𝐾+𝐷𝑗𝑒𝑖𝑘𝑉𝑗𝐾,𝑑6𝑗=2𝑘2Γ0𝜇𝑉𝑗𝐷𝑗𝑒𝑖𝑘𝑉𝑗𝐾+𝑘2Γ0𝜇𝑚𝑗1𝑉𝑗2+𝐹𝑠1𝑘2𝛽2𝑚𝑗1+𝑉𝑗2𝑚𝑗𝑘2𝑐2+Ω2+𝑖𝑘(2Ω𝑐𝑔)×𝐷𝑗𝑒𝑖𝑘𝑉𝑗𝐾,𝑑7𝑗=𝜌𝛾𝛼2𝑘2𝑉2𝑗+1+𝑘2𝑐2𝑖𝑔𝑘𝑚𝑗𝐶𝑗𝑒𝑖𝑘𝑉𝑗𝐾+𝐷𝑗𝑒𝑖𝑘𝑉𝑗𝐾,𝑑7𝑗=𝜌𝛾𝛼2𝑘2𝑉𝑗2+1+𝑘2𝑐2𝑖𝑔𝑘𝑚𝑗𝐷𝑗𝑒𝑖𝑘𝑉𝑗𝐾,𝑑8𝑗=𝜌𝛾𝛼2𝑘2𝑉2𝑗+1+𝑘2𝑐2𝑖𝑔𝑘𝑚𝑗𝜃+𝑖𝑘𝑉𝑗𝐶𝑗𝑒𝑖𝑘𝑉𝑗𝐾+𝜃𝑖𝑘𝑉𝑗𝐷𝑗𝑒𝑖𝑘𝑉𝑗𝐾,𝑑8𝑗=𝜌𝛾𝛼2𝑘2𝑉𝑗2+1+𝑘2𝑐2𝑖𝑔𝑘𝑚𝑗𝜃𝑖𝑘𝑉𝑗𝐷𝑗𝑒𝑖𝑘𝑉𝑗𝐾,𝑑9𝑗=𝑀𝑉𝑗𝑘2𝑚𝑗𝑉2𝑗+1+1𝑖𝑘𝑐𝑠1𝑘2𝛽2𝑚𝑗1+𝑉2𝑗𝑚𝑗𝑘2𝑐2+Ω2×𝐶+𝑖𝑘(2Ω𝑐𝑔)𝑗𝐷𝑗,𝑑10𝑗=Γ0𝜆1𝑉𝑗𝑚𝑗+Γ0𝑉(𝜆+2𝜇)2𝑗+𝑚𝑗𝑉𝑗𝐶𝑗+Γ0𝜆1+𝑉𝑗𝑚𝑗+Γ0𝑉(𝜆+2𝜇)2𝑗𝑚𝑗𝑉𝑗𝐷𝑗+𝜌𝛼21+𝑉2𝑗+𝑐2𝑖𝑔𝑘𝑚𝑗𝐶𝑗+𝐷𝑗,𝑑11𝑗=2𝑘2Γ0𝜇𝑉𝑗𝐶𝑗𝐷𝑗+𝑘2Γ0𝜇𝑚𝑗1𝑉2𝑗+𝐹𝑠1𝑘2𝛽2𝑚𝑗1+𝑉2𝑗𝑚𝑗𝑘2𝑐2+Ω2×𝐶+𝑖𝑘(2Ω𝑐𝑔)𝑗+𝐷𝑗,𝑑12𝑗=𝛼2𝑘2𝑉2𝑗+1+𝑘2𝑐2𝑖𝑔𝑘𝑚𝑗𝜃+𝑖𝑘𝑉𝑗𝐶𝑗+𝜃𝑖𝑘𝑉𝑗𝐷𝑗,𝑑9𝑗=𝑑10𝑗=𝑑11𝑗=𝑑12𝑗=0,𝑗=1,2,3,4.(5.5)

5.2. The Magnetic Field, Initial Stress, Rotation, and Thermal Relaxation Time Are Neglected and in Viscoelastic Medium

In this case (i.e., 𝐻0=0, 𝑃=0, Ω=0,and𝜏0=𝜏1=𝜏2=0), the previous results obtained as in Abd-Alla et al. [20].

5.3. Absence of the Gravity Field

In this case, we put 𝑔=0, then (3.20) becomes𝛼2𝐷4+𝐺1𝐷2+𝐺2𝜙1𝐺3𝐷2+𝐺4𝜓1𝑅=0,1𝐷4+𝑅2𝐷2+𝑅3𝜓1+𝑅4𝐷2+𝑅5𝜙1=0,(5.6) where𝐺3=2𝑖𝑘Ω𝑐,𝐺4=2Ω𝑐𝑖𝑘3+𝑘2𝑐Γ2𝜒,𝑅4=2𝑖𝑘Ω𝑐,𝑅5=2Ω𝑐𝑖𝑘3𝑘2𝑐𝑠2,(5.7) and 𝐺1,𝐺2,𝑅1,𝑅2, and 𝑅3 are as in (3.21).

The solution of (5.6) take the form𝜙=4𝑗=1𝐶𝑗𝑒𝑖𝑘𝑋𝑗𝑧+𝐷𝑗𝑒𝑖𝑘𝑋𝑗𝑧𝑒𝑖𝑘(𝑥𝑐𝑡),𝜓=4𝑗=1𝐸𝑗𝑒𝑖𝑘𝑋𝑗𝑧+𝐹𝑗𝑒𝑖𝑘𝑋𝑗𝑧𝑒𝑖𝑘(𝑥𝑐𝑡),(5.8) where𝐸𝑗=𝑚𝑗𝐶𝑗,𝐹𝑗=𝑚𝑗𝐷𝑗𝑚,𝑗=1,2,3,4,(5.9)𝑗=12Ω𝑐𝑖𝑘𝑋2𝑗𝑖𝑘𝜀Γ2×𝛼/𝜒2𝑘2𝑋4𝑗𝑘2𝑐22𝛼2+𝑖𝑘𝑐𝜒𝛼2Γ2+𝜒𝜀Γ1Γ3+Ω2𝑋2𝑗+𝑖𝑘𝑐Γ2𝜒1𝛼2+Ω2𝑘2Ω2+𝑖𝑘𝜀𝑐Γ1Γ3,(5.10) and 𝑋1,𝑋2,𝑋3,and 𝑋4 are taken to be the complex roots of equation𝑋8+𝑡1𝑋6+𝑡2𝑋4+𝑡3𝑋2+𝑡4=0,(5.11) where𝑡1=𝑘2𝛼2𝑐22𝛼2+𝑖𝑘𝑐𝛼2𝜒𝛼2Γ2+𝜒𝜀Γ1Γ3+Ω2+1𝛽2+𝑖𝑘𝑐𝑠1×𝑘2𝑐22𝛽2𝑠+𝑖𝑘𝑐2𝛽22𝑘2𝑠1+Ω2,𝑡2=1𝛼2𝑘4𝛼2𝑐2+𝑖𝑘𝑐Γ2𝜒𝑘21𝛼2+Ω2𝑘2Ω2+𝑖𝑘𝜀𝑐Γ1Γ3+1𝛼2𝛽2+𝑖𝑘𝑐𝑠1𝑘2𝑐22𝛽2𝑠+𝑖𝑘𝑐2𝛽22𝑘2𝑠1+Ω2×𝑘2𝑐22𝛼2+𝑖𝑘𝑐𝜒𝛼2Γ2+𝜒𝜀Γ1Γ3+Ω2+1𝛽2+𝑖𝑘𝑐𝑠1𝑘2𝑘2𝑖𝑘𝑐𝑠2𝛽2𝑐2𝑠+𝑖𝑘𝑐2Ω2+𝑘4𝑠11𝛼2𝛽2+𝑖𝑘𝑐𝑠14𝑘2Ω2𝑐2,𝑡3=1𝛼2𝛽2+𝑖𝑘𝑐𝑠1×𝑘2𝑐22𝛽2𝑠+𝑖𝑘𝑐2𝛽22𝑘2𝑠1+Ω2×𝑘4𝛼2𝑐2+𝑖𝑘𝑐Γ2𝜒𝑘21𝛼2+Ω2𝑘2Ω2+𝑖𝑘𝜀𝑐Γ1Γ3+𝑘2𝑘2𝑖𝑘𝑐𝑠2𝛽2𝑐2𝑠+𝑖𝑘𝑐2Ω2+𝑘4𝑠1×𝑘2𝑐22𝛼2+𝑖𝑘𝑐𝜒𝛼2Γ2+𝜒𝜀Γ1Γ3+Ω24Ω2𝑐2𝑖𝑘𝑖𝑘3+𝑘2𝑐Γ2𝜒+𝑖𝑘3𝑖𝑘𝑐𝑠2,𝑡4=1𝛼2𝛽2𝑘+𝑖𝑘𝑐𝑠2𝑘2𝑖𝑘𝑐𝑠2𝛽2𝑐2𝑠+𝑖𝑘𝑐2Ω2+𝑘4𝑠1[]+2𝑖𝑘Ω𝑐4Ω2𝑐2𝑖𝑘3𝑘2𝑐𝑠2𝑖𝑘3+𝑘2𝑐Γ2𝜒,𝑢=𝑖𝑘4𝑗=11𝑋𝑗𝑚𝑗𝐶𝑗𝑒𝑖𝑘𝑋𝑗𝑧+1+𝑋𝑗𝑚𝑗𝐷𝑗𝑒𝑖𝑘𝑋𝑗𝑧𝑒𝑖𝑘(𝑥𝑐𝑡),𝑤=𝑖𝑘4𝑗=1𝑋𝑗+𝑚𝑗𝐶𝑗𝑒𝑖𝑘𝑋𝑗𝑧+𝑚𝑗𝑋𝑗𝐷𝑗𝑒𝑖𝑘𝑋𝑗𝑧𝑒𝑖𝑘(𝑥𝑐𝑡),𝜂1=4𝑗=11𝑖𝑘𝑐𝑠1𝑘2𝛽2𝑚𝑗1+𝑋2𝑗𝑚𝑗𝑘2𝑐2+Ω2×𝐶+2𝑖𝑘Ω𝑐𝑗𝑒𝑖𝑘𝑋𝑗𝑧+𝐷𝑗𝑒𝑖𝑘𝑋𝑗𝑧,𝜌𝑇=𝛾Γ14𝑗=1𝛼2𝑘21+𝑋2𝑗+𝑘2𝑐2𝐶𝑗𝑒𝑖𝑘𝑋𝑗𝑧+𝐷𝑗𝑒𝑖𝑘𝑋𝑗𝑧𝑒𝑖𝑘(𝑥𝑐𝑡).(5.12)

With the lower medium, we use the symbols with primes, for 𝜉1,𝜁1,𝜂1,𝑇,𝜙,𝜓, and 𝑞, for 𝑧>Κ,𝜉1𝑘=𝑞𝐵2𝑒𝑖𝑞𝑧,𝜁1=𝐵2𝑒𝑖𝑞𝑧,𝜂1=4𝑗=11𝑖𝑘𝑐𝑠1𝑘2𝛽2𝑚𝑗1+𝑋𝑗2𝑚𝑗𝑘2𝑐2+Ω2+2𝑖𝑘Ω𝑐𝐷𝑗𝑒𝑖𝑘𝑋𝑗𝑧,𝑇=𝜌𝛾Γ14𝑗=1𝛼2𝑘21+𝑋𝑗2+𝑘2𝑐2𝐷𝑗𝑒𝑖𝑘𝑋𝑗𝑧𝑒𝑖𝑘(𝑥𝑐𝑡),𝜙=4𝑗=1𝐷𝑗𝑒𝑖𝑘𝑁𝑗𝑧𝑒𝑖𝑘(𝑥𝑐𝑡),𝜓=4𝑗=1𝐹𝑗𝑒𝑖𝑘𝑋𝑗𝑧𝑒𝑖𝑘(𝑥𝑐𝑡).(5.13)

From conditions (iii), (v), (vi), (vii), we get the same equations (4.1) and (4.2): the other significant boundary conditions are responsible for the following relations: (i)𝑞1𝐶1𝑒𝑖𝑘𝑋1𝐾+𝑞2𝐶2𝑒𝑖𝑘𝑋2𝐾+𝑞3𝐶3𝑒𝑖𝑘𝑋3𝐾+𝑞4𝐶4𝑒𝑖𝑘𝑋4𝐾+𝑞5𝐷1𝑒𝑖𝑘𝑋1𝐾+𝑞6𝐷2𝑒𝑖𝑘𝑋2𝐾+𝑞7𝐷3𝑒𝑖𝑘𝑋3𝐾+𝑞8𝐷4𝑒𝑖𝑘𝑋4𝐾=𝑞9𝐷1𝑒𝑖𝑘𝑋1𝐾+𝑞10𝐷2𝑒𝑖𝑘𝑋2𝐾+𝑞11𝐷3𝑒𝑖𝑘𝑋3𝐾+𝑞12𝐷4𝑒𝑖𝑘𝑋4𝐾,(5.14)(ii)𝑞13𝐶1𝑒𝑖𝑘𝑋1Κ+𝑞14𝐶2𝑒𝑖𝑘𝑋2Κ+𝑞15𝐶3𝑒𝑖𝑘𝑋3Κ+𝑞16𝐶4𝑒𝑖𝑘𝑋4Κ+𝑞17𝐷1𝑒𝑖𝑘𝑋1Κ+𝑞18𝐷2𝑒𝑖𝑘𝑋2Κ+𝑞19𝐷3𝑒𝑖𝑘𝑋3Κ+𝑞20𝐷4𝑒𝑖𝑘𝑋4Κ=𝑞21𝐷1𝑒𝑖𝑘𝑋1Κ+𝑞22𝐷2𝑒𝑖𝑘𝑋2Κ+𝑞23𝐷3𝑒𝑖𝑘𝑋3Κ+𝑞24𝐷4𝑒𝑖𝑘𝑋4Κ,(5.15)(iv)𝑞25𝐶1𝑒𝑖𝑘𝑋1Κ+𝑞26𝐶2𝑒𝑖𝑘𝑋2Κ+𝑞27𝐶3𝑒𝑖𝑘𝑋3Κ+𝑞28𝐶4𝑒𝑖𝑘𝑋4Κ+𝑞25𝐷1𝑒𝑖𝑘𝑋1Κ+𝑞26𝐷2𝑒𝑖𝑘𝑋2Κ+𝑞27𝐷3𝑒𝑖𝑘𝑋3Κ+𝑞28𝐷4𝑒𝑖𝑘𝑋4Κ=𝑞29𝐷1𝑒𝑖𝑘𝑋1Κ+𝑞30𝐷2𝑒𝑖𝑘𝑋2Κ+𝑞31𝐷3𝑒𝑖𝑘𝑋3Κ+𝑞32𝐷4𝑒𝑖𝑘𝑋4Κ,(5.16)(viii)𝑞33𝐶1𝑒𝑖𝑘𝑋1Κ+𝑞34𝐶2𝑒𝑖𝑘𝑋2Κ+𝑞35𝐶3𝑒𝑖𝑘𝑋3Κ+𝑞36𝐶4𝑒𝑖𝑘𝑋4Κ𝑞33𝐷1𝑒𝑖𝑘𝑋1Κ𝑞34𝐷2𝑒𝑖𝑘𝑋2Κ𝑞35𝐷3𝑒𝑖𝑘𝑋3Κ𝑞36𝐷4𝑒𝑖𝑘𝑋4Κ=𝑞37𝐷1𝑒𝑖𝑘𝑋1Κ𝑞38𝐷2𝑒𝑖𝑘𝑋2Κ𝑞39𝐷3𝑒𝑖𝑘𝑋3Κ𝑞40𝐷4𝑒𝑖𝑘𝑋4Κ,(5.17)(ix)𝑞41𝐶1𝑒𝑖𝑘𝑋1Κ+𝑞42𝐶2𝑒𝑖𝑘𝑋2Κ+𝑞43𝐶3𝑒𝑖𝑘𝑋3Κ+𝑞44𝐶4𝑒𝑖𝑘𝑋4Κ+𝑞45𝐷1𝑒𝑖𝑘𝑋1Κ+𝑞46𝐷2𝑒𝑖𝑘𝑋2Κ+𝑞47𝐷3𝑒𝑖𝑘𝑋3Κ+𝑞48𝐷4𝑒𝑖𝑘𝑋4Κ=𝑞49𝐷1𝑒𝑖𝑘𝑋1Κ+𝑞50𝐷2𝑒𝑖𝑘𝑋2Κ+𝑞51𝐷3𝑒𝑖𝑘𝑋3Κ+𝑞52𝐷4𝑒𝑖𝑘𝑋4Κ,(5.18)(x)𝑞53𝐶1𝑒𝑖𝑘𝑋1Κ+𝑞54𝐶2𝑒𝑖𝑘𝑋2Κ+𝑞55𝐶3𝑒𝑖𝑘𝑋3Κ+𝑞56𝐶4𝑒𝑖𝑘𝑋4Κ+𝑞57𝐷1𝑒𝑖𝑘𝑋1Κ+𝑞58𝐷2𝑒𝑖𝑘𝑋2Κ+𝑞59𝐷3𝑒𝑖𝑘𝑋3Κ+𝑞60𝐷4𝑒𝑖𝑘𝑋4Κ=𝑞61𝐷1𝑒𝑖𝑘𝑋1Κ+𝑞62𝐷2𝑒𝑖𝑘𝑋2Κ+𝑞63𝐷3𝑒𝑖𝑘𝑋3Κ+𝑞64𝐷4𝑒𝑖𝑘𝑋4Κ,(5.19)(xii)𝑞65𝐶1𝑒𝑖𝑘𝑋1Κ+𝑞66𝐶2𝑒𝑖𝑘𝑋2Κ+𝑞67𝐶3𝑒𝑖𝑘𝑋3Κ+𝑞68𝐶4𝑒𝑖𝑘𝑋4Κ+𝑞65𝐷1𝑒𝑖𝑘𝑋1Κ+𝑞66𝐷2𝑒𝑖𝑘𝑋2Κ+𝑞67𝐷3𝑒𝑖𝑘𝑋3Κ+𝑞68𝐷4𝑒𝑖𝑘𝑋4Κ=𝑞69𝐷1𝑒𝑖𝑘𝑋1Κ+𝑞70𝐷2𝑒𝑖𝑘𝑋2Κ+𝑞71𝐷3𝑒𝑖𝑘𝑋3Κ+𝑞72𝐷4𝑒𝑖𝑘𝑋4Κ,(5.20)(xiii)𝑞73𝐶1𝑒𝑖𝑘𝑋1Κ+𝑞74𝐶2𝑒𝑖𝑘𝑋2Κ+𝑞75𝐶3𝑒𝑖𝑘𝑋3Κ+𝑞76𝐶4𝑒𝑖𝑘𝑋4Κ+𝑞77𝐷1𝑒𝑖𝑘𝑋1Κ+𝑞78𝐷2𝑒𝑖𝑘𝑋2Κ+𝑞79𝐷3𝑒𝑖𝑘𝑋3Κ+𝑞80𝐷4𝑒𝑖𝑘𝑋4Κ=𝑞81𝐷1𝑒𝑖𝑘𝑋1Κ+𝑞82𝐷2𝑒𝑖𝑘𝑋2Κ+𝑞83𝐷3𝑒𝑖𝑘𝑋3Κ+𝑞84𝐷4𝑒𝑖𝑘𝑋4Κ,(5.21)(xvi)𝑞85𝐶1𝑒𝑖𝑘𝑋1Κ+𝑞86𝐶2𝑒𝑖𝑘𝑋2Κ+𝑞87𝐶3𝑒𝑖𝑘𝑋3Κ+𝑞88𝐶4𝑒𝑖𝑘𝑋4Κ𝑞85𝐷1𝑒𝑖𝑘𝑋1Κ+𝑞86𝐷2𝑒𝑖𝑘𝑋2Κ+𝑞87𝐷3𝑒𝑖𝑘𝑋3Κ+𝑞88𝐷4𝑒𝑖𝑘𝑋4Κ=0,(5.22)(xvii)𝑞89𝐶1𝑒𝑖𝑘𝑋1Κ+𝑞90𝐶2𝑒𝑖𝑘𝑋2Κ+𝑞91𝐶3𝑒𝑖𝑘𝑋3Κ+𝑞92𝐶4𝑒𝑖𝑘𝑋4Κ+𝑞93𝐷1𝑒𝑖𝑘𝑋1Κ+𝑞94𝐷2𝑒𝑖𝑘𝑋2Κ+𝑞95𝐷3𝑒𝑖𝑘𝑋3Κ+𝑞96𝐷4𝑒𝑖𝑘𝑋4Κ=0,(5.23)(xviii)𝑞97𝐶1𝑒𝑖𝑘𝑋1Κ+𝑞98𝐶2𝑒𝑖𝑘𝑋2Κ+𝑞99𝐶3𝑒𝑖𝑘𝑋3Κ+𝑞100𝐶4𝑒𝑖𝑘𝑋4Κ+𝑞101𝐷1𝑒𝑖𝑘𝑋1Κ+𝑞102𝐷2𝑒𝑖𝑘𝑋2Κ+𝑞103𝐷3𝑒𝑖𝑘𝑋3Κ+𝑞104𝐷4𝑒𝑖𝑘𝑋4Κ=0,(5.24)(xx)𝑞105𝐶1𝑒𝑖𝑘𝑋1Κ+𝑞106𝐶2𝑒𝑖𝑘𝑋2Κ+𝑞107𝐶3𝑒𝑖𝑘𝑋3Κ+𝑞108𝐶4𝑒𝑖𝑘𝑋4Κ+𝑞109𝐷1𝑒𝑖𝑘𝑋1Κ+𝑞110𝐷2𝑒𝑖𝑘𝑋2Κ+𝑞111𝐷3𝑒𝑖𝑘𝑋3Κ+𝑞112𝐷4𝑒𝑖𝑘𝑋4Κ=0,(5.25)

where 𝑞1=1𝑋1𝑚1,𝑞2=1𝑋2𝑚2,𝑞3=1𝑋3𝑚3,𝑞4=1𝑋4𝑚4,𝑞5=1+𝑋1𝑚1,𝑞6=1+𝑋2𝑚2,𝑞7=1+𝑋3𝑚3,𝑞8=1+𝑋4𝑚4,𝑞9=1+𝑋1𝑚1,𝑞10=1+𝑋2𝑚2,𝑞11=1+𝑋3𝑚3,𝑞12=1+𝑋4𝑚4,𝑞13=𝑋1+𝑚1,𝑞14=𝑋2+𝑚2,𝑞15=𝑋3+𝑚3,𝑞16=𝑋4+𝑚4,𝑞17=𝑚1𝑋1,𝑞18=𝑚2𝑋2,𝑞19=𝑚3𝑋3,𝑞20=𝑚4𝑋4,𝑞21=𝑚1𝑋1,𝑞22=𝑚2𝑋2,𝑞23=𝑚3𝑋3,𝑞24=𝑚4𝑋4,𝑞25=1𝑐𝑠1𝑘2𝛽2𝑚11+𝑋21𝑚1𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐26=1𝑐𝑠1𝑘2𝛽2𝑚41+𝑋22𝑚2𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐27=1𝑐𝑠1𝑘2𝛽2𝑚31+𝑋23𝑚3𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐28=1𝑐𝑠1𝑘2𝛽2𝑚41+𝑋24𝑚4𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐29=1𝑐𝑠1𝑘2𝛽2𝑚11+𝑋21𝑚1𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐30=1𝑐𝑠1𝑘2𝛽2𝑚21+𝑋22𝑚2𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐31=1𝑐𝑠1𝑘2𝛽2𝑚31+𝑋23𝑚3𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐32=1𝑐𝑠1𝑘2𝛽2𝑚41+𝑋24𝑚4𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐33=𝑀𝑋1𝑘2𝑚1𝑋21+1+1𝑖𝑘𝑐𝑠1𝑘2𝛽2𝑚11+𝑋21𝑚1𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐34=𝑀𝑋2𝑘2𝑚2𝑋22+1+1𝑖𝑘𝑐𝑠1𝑘2𝛽2𝑚21+𝑋22𝑚2𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐35=𝑀𝑋3𝑘2𝑚3𝑋23+1+1𝑖𝑘𝑐𝑠1𝑘2𝛽2𝑚31+𝑋23𝑚3𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐36=𝑀𝑋4𝑘2𝑚4𝑋24+1+1𝑖𝑘𝑐𝑠1𝑘2𝛽2𝑚41+𝑋24𝑚4𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐37=𝑀𝑋1𝑘2𝑚1𝑋21+1+1𝑖𝑘𝑐𝑠1𝑘2𝛽2𝑚11+𝑋21𝑚1𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐38=𝑀𝑋2𝑘2𝑚2𝑋22+1+1𝑖𝑘𝑐𝑠1𝑘2𝛽2𝑚21+𝑋22𝑚2𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐39=𝑀𝑋3𝑘2𝑚3𝑋23+1+1𝑖𝑘𝑐𝑠1𝑘2𝛽2𝑚31+𝑋23𝑚3𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐40=𝑀𝑋4𝑘2𝑚4𝑋24+1+1𝑖𝑘𝑐𝑠1𝑘2𝛽2𝑚41+𝑋21𝑚4𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐41=Γ0𝜆+𝜇𝑒𝐻201𝑋1𝑚1+Γ0(𝜆+2𝜇)+𝜇𝑒𝐻20𝑋21+𝑚1𝑋1+𝜌𝛼21+𝑋21+𝑐2,𝑞42=Γ0𝜆+𝜇𝑒𝐻201𝑋2𝑚2+Γ0(𝜆+2𝜇)+𝜇𝑒𝐻20𝑋22+𝑚2𝑋2+𝜌𝛼21+𝑋22+𝑐2,𝑞43=Γ0𝜆+𝜇𝑒𝐻201𝑋3𝑚3+Γ0(𝜆+2𝜇)+𝜇𝑒𝐻20𝑋23+𝑚3𝑋3+𝜌𝛼21+𝑋23+𝑐2,𝑞64=2𝑘2Γ0𝜇𝑋4𝑘2Γ0𝜇𝑚41𝑋24+𝐹𝑠1𝑘2𝛽2𝑚41+𝑋24𝑚4𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐44=Γ0𝜆+𝜇𝑒𝐻201𝑋4𝑚4+Γ0(𝜆+2𝜇)+𝜇𝑒𝐻20𝑋24+𝑚4𝑋4+𝜌𝛼21+𝑋24+𝑐2,𝑞45=Γ0𝜆+𝜇𝑒𝐻201+𝑋1𝑚1+Γ0(𝜆+2𝜇)+𝜇𝑒𝐻20𝑋21𝑚1𝑋1+𝜌𝛼21+𝑋21+𝑐2,𝑞46=Γ0𝜆+𝜇𝑒𝐻201+𝑋2𝑚2+Γ0(𝜆+2𝜇)+𝜇𝑒𝐻20𝑋22𝑚2𝑋2+𝜌𝛼21+𝑋22+𝑐2,𝑞47=Γ0𝜆+𝜇𝑒𝐻201+𝑋3𝑚3+Γ0(𝜆+2𝜇)+𝜇𝑒𝐻20𝑋23𝑚3𝑋3+𝜌𝛼21+𝑋23+𝑐2,𝑞48=Γ0𝜆+𝜇𝑒𝐻201+𝑋4𝑚4+Γ0(𝜆+2𝜇)+𝜇𝑒𝐻20𝑋24𝑚4𝑋4+𝜌𝛼21+𝑋24+𝑐2,𝑞49=Γ0𝜆+𝜇𝑒𝐻201+𝑋1𝑚1+Γ0𝜆+2𝜇+𝜇𝑒𝐻20𝑋21𝑚1𝑋1+𝜌𝛼21+𝑋21+𝑐2,𝑞50=Γ0𝜆+𝜇𝑒𝐻201+𝑋2𝑚2+Γ0𝜆+2𝜇+𝜇𝑒𝐻20𝑋22𝑚2𝑋2+𝜌𝛼21+𝑋22+𝑐2,𝑞51=Γ0𝜆+𝜇𝑒𝐻201+𝑋3𝑚3+Γ0𝜆+2𝜇+𝜇𝑒𝐻20𝑋23𝑚3𝑋3+𝜌𝛼21+𝑋23+𝑐2,𝑞52=Γ0𝜆+𝜇𝑒𝐻201+𝑋4𝑚4+Γ0𝜆+2𝜇+𝜇𝑒𝐻20𝑋24𝑚4𝑋4+𝜌𝛼21+𝑋24+𝑐2,𝑞53=2𝑘2Γ0𝜇𝑋1𝑘2Γ0𝜇𝑚11𝑋21+𝐹𝑠1𝑘2𝛽2𝑚11+𝑋21𝑚1𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐54=2𝑘2Γ0𝜇𝑋2𝑘2Γ0𝜇𝑚21𝑋22+𝐹𝑠1𝑘2𝛽2𝑚21+𝑋22𝑚2𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐55=2𝑘2Γ0𝜇𝑋3𝑘2Γ0𝜇𝑚31𝑋23+𝐹𝑠1𝑘2𝛽2𝑚31+𝑋23𝑚3𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐56=2𝑘2Γ0𝜇𝑋4𝑘2Γ0𝜇𝑚41𝑋24+𝐹𝑠1𝑘2𝛽2𝑚41+𝑋24𝑚4𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐57=2𝑘2Γ0𝜇𝑋1𝑘2Γ0𝜇𝑚11𝑋21+𝐹𝑠1𝑘2𝛽2𝑚11+𝑋21𝑚1𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐58=2𝑘2Γ0𝜇𝑋2𝑘2Γ0𝜇𝑚21𝑋22+𝐹𝑠1𝑘2𝛽2𝑚21+𝑋22𝑚2𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐59=2𝑘2Γ0𝜇𝑋3𝑘2Γ0𝜇𝑚31𝑋23+𝐹𝑠1𝑘2𝛽2𝑚31+𝑋23𝑚3𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐60=2𝑘2Γ0𝜇𝑋4𝑘2Γ0𝜇𝑚41𝑋24+𝐹𝑠1𝑘2𝛽2𝑚41+𝑋24𝑚4𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐61=2𝑘2Γ0𝜇𝑋1𝑘2Γ0𝜇𝑚11𝑋21+𝐹𝑠1𝑘2𝛽2𝑚11+𝑋21𝑚1𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐62=2𝑘2Γ0𝜇𝑋2𝑘2Γ0𝜇𝑚21𝑋22+𝐹𝑠1𝑘2𝛽2𝑚21+𝑋22𝑚2𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐63=2𝑘2Γ0𝜇𝑋3𝑘2Γ0𝜇𝑚31𝑋23+𝐹𝑠1𝑘2𝛽2𝑚31+𝑋23𝑚3𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐65=𝜌𝛾𝛼2𝑘2𝑋21+1+𝑘2𝑐2,𝑞66=𝜌𝛾𝛼2𝑘2𝑋22+1+𝑘2𝑐2,𝑞67=𝜌𝛾𝛼2𝑘2𝑋23+1+𝑘2𝑐2,𝑞68=𝜌𝛾𝛼2𝑘2𝑋24+1+𝑘2𝑐2,𝑞69=𝜌𝛾𝛼2𝑘2𝑋21+1+𝑘2𝑐2,𝑞70=𝜌𝛾𝛼2𝑘2𝑋22+1+𝑘2𝑐2,𝑞71=𝜌𝛾𝛼2𝑘2𝑋23+1+𝑘2𝑐2,𝑞72=𝜌𝛾𝛼2𝑘2𝑋24+1+𝑘2𝑐2,𝑞73=𝜌𝛾𝛼2𝑘2𝑋21+1+𝑘2𝑐2𝜃+𝑖𝑘𝑋1,𝑞74=𝜌𝛾𝛼2𝑘2𝑋22+1+𝑘2𝑐2𝜃+𝑖𝑘𝑋2,𝑞75=𝜌𝛾𝛼2𝑘2𝑋23+1+𝑘2𝑐2𝜃+𝑖𝑘𝑋3,𝑞76=𝜌𝛾𝛼2𝑘2𝑋24+1+𝑘2𝑐2𝜃+𝑖𝑘𝑋4,𝑞77=𝜌𝛾𝛼2𝑘2𝑋21+1+𝑘2𝑐2𝜃𝑖𝑘𝑋1,𝑞78=𝜌𝛾𝛼2𝑘2𝑋22+1+𝑘2𝑐2𝜃𝑖𝑘𝑋2,𝑞79=𝜌𝛾𝛼2𝑘2𝑋23+1+𝑘2𝑐2𝜃𝑖𝑘𝑋3,𝑞80=𝜌𝛾𝛼2𝑘2𝑋24+1+𝑘2𝑐2𝜃𝑖𝑘𝑋4,𝑞81=𝜌𝛾𝛼2𝑘2𝑋21+1+𝑘2𝑐2𝜃𝑖𝑘𝑋1,𝑞82=𝜌𝛾𝛼2𝑘2𝑋22+1+𝑘2𝑐2𝜃𝑖𝑘𝑋2,𝑞83=𝜌𝛾𝛼2𝑘2𝑋23+1+𝑘2𝑐2𝜃𝑖𝑘𝑋3,𝑞84=𝜌𝛾𝛼2𝑘2𝑋23+1+𝑘2𝑐2𝜃𝑖𝑘𝑋3,𝑞85=𝑀𝑋1𝑘2𝑚1𝑋21+1+1𝑖𝑘𝑐𝑠1𝑘2𝛽2𝑚11+𝑋21𝑚1𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐86=𝑀𝑋2𝑘2𝑚𝑗𝑋22+1+1𝑖𝑘𝑐𝑠1𝑘2𝛽2𝑚21+𝑋22𝑚2𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐87=𝑀𝑋3𝑘2𝑚𝑗𝑋23+1+1𝑖𝑘𝑐𝑠1𝑘2𝛽2𝑚31+𝑋23𝑚3𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐88=𝑀𝑋4𝑘2𝑚4𝑋24+1+1𝑖𝑘𝑐𝑠1𝑘2𝛽2𝑚41+𝑋24𝑚4𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐89=Γ0𝜆+𝜇𝑒𝐻201𝑋1𝑚1+Γ0(𝜆+2𝜇)+𝜇𝑒𝐻20𝑋21+𝑚1𝑋1+𝜌𝛼21+𝑋21+𝑐2,𝑞90=Γ0𝜆+𝜇𝑒𝐻201𝑋2𝑚2+Γ0(𝜆+2𝜇)+𝜇𝑒𝐻20𝑋22+𝑚2𝑋2+𝜌𝛼21+𝑋22+𝑐2,𝑞91=Γ0𝜆+𝜇𝑒𝐻201𝑋3𝑚3+Γ0(𝜆+2𝜇)+𝜇𝑒𝐻20𝑋23+𝑚3𝑋3+𝜌𝛼21+𝑋23+𝑐2,𝑞92=Γ0𝜆+𝜇𝑒𝐻201𝑋4𝑚4+Γ0(𝜆+2𝜇)+𝜇𝑒𝐻20𝑋24+𝑚4𝑋4+𝜌𝛼21+𝑋24+𝑐2,𝑞93=Γ0𝜆+𝜇𝑒𝐻201+𝑋1𝑚1+Γ0(𝜆+2𝜇)+𝜇𝑒𝐻20𝑋21𝑚1𝑋1+𝜌𝛼21+𝑋21+𝑐2,𝑞94=Γ0𝜆+𝜇𝑒𝐻201+𝑋2𝑚2+Γ0(𝜆+2𝜇)+𝜇𝑒𝐻20𝑋22𝑚2𝑋2+𝜌𝛼21+𝑋22+𝑐2,𝑞95=Γ0𝜆+𝜇𝑒𝐻201+𝑋3𝑚3+Γ0(𝜆+2𝜇)+𝜇𝑒𝐻20𝑋23𝑚3𝑋3+𝜌𝛼21+𝑋23+𝑐2,𝑞96=Γ0𝜆+𝜇𝑒𝐻201+𝑋4𝑚4+Γ0(𝜆+2𝜇)+𝜇𝑒𝐻20𝑋24𝑚4𝑋4+𝜌𝛼21+𝑋24+𝑐2,𝑞97=2𝑘2Γ0𝜇𝑋1𝑘2Γ0𝜇𝑚11𝑋21+𝐹𝑠1𝑘2𝛽2𝑚11+𝑋21𝑚1𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐98=2𝑘2Γ0𝜇𝑋2𝑘2Γ0𝜇𝑚21𝑋2𝑗+𝐹𝑠1𝑘2𝛽2𝑚21+𝑋22𝑚2𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐99=2𝑘2Γ0𝜇𝑋3𝑘2Γ0𝜇𝑚31𝑋23+𝐹𝑠1𝑘2𝛽2𝑚31+𝑋23𝑚3𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐100=2𝑘2Γ0𝜇𝑋4𝑘2Γ0𝜇𝑚41𝑋24+𝐹𝑠1𝑘2𝛽2𝑚41+𝑋24𝑚4𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐101=2𝑘2Γ0𝜇𝑋1𝑘2Γ0𝜇𝑚11𝑋21+𝐹𝑠1𝑘2𝛽2𝑚11+𝑋21𝑚1𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐102=2𝑘2Γ0𝜇𝑋2𝑘2Γ0𝜇𝑚21𝑋22+𝐹𝑠1𝑘2𝛽2𝑚21+𝑋22𝑚2𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐103=2𝑘2Γ0𝜇𝑋3𝑘2Γ0𝜇𝑚31𝑋23+𝐹𝑠1𝑘2𝛽2𝑚31+𝑋23𝑚3𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐104=2𝑘2Γ0𝜇𝑋4𝑘2Γ0𝜇𝑚41𝑋24+𝐹𝑠1𝑘2𝛽2𝑚41+𝑋24𝑚4𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐105=𝛼2𝑘2𝑋21+1+𝑘2𝑐2𝜃+𝑖𝑘𝑋1,𝑞106=𝛼2𝑘2𝑋22+1+𝑘2𝑐2𝜃+𝑖𝑘𝑋2,𝑞107=𝛼2𝑘2𝑋23+1+𝑘2𝑐2𝜃+𝑖𝑘𝑋3,𝑞108=𝛼2𝑘2𝑋24+1+𝑘2𝑐2𝜃+𝑖𝑘𝑋4,𝑞109=𝛼2𝑘2𝑋21+1+𝑘2𝑐2𝜃𝑖𝑘𝑋1,𝑞110=𝛼2𝑘2𝑋22+1+𝑘2𝑐2𝜃𝑖𝑘𝑋2,𝑞111=𝛼2𝑘2𝑋23+1+𝑘2𝑐2𝜃𝑖𝑘𝑋3,𝑞112=𝛼2𝑘2𝑋24+1+𝑘2𝑐2𝜃𝑖𝑘𝑋4.(5.26)

Elimination of 𝐶𝑗,𝐷𝑗, and 𝐷𝑗 gives the wave velocity equation in the determinant form det𝑑𝑖𝑗=0.(5.27) This equation has complex roots: the real part (Re) gives the Rayleigh wave velocity, and the imaginary part (Im) gives the attenuation coefficient due to the friction of the granular nature of the medium, where the nonvanishing of the twelfth-order determinant of 𝑑𝑖𝑗 is given by|||||||||||||||||𝑞85𝑒1𝐾𝑖𝑘𝑋𝑞86𝑒2𝐾𝑖𝑘𝑋𝑞87𝑒3𝐾𝑖𝑘𝑋𝑞88𝑒4𝐾𝑖𝑘𝑋𝑞85𝑒1𝐾𝑖𝑘𝑋𝑞86𝑒2𝐾𝑖𝑘𝑋𝑞87𝑒3𝐾𝑖𝑘𝑋𝑞88𝑒4𝐾𝑖𝑘𝑋𝑞000089𝑒1𝐾𝑖𝑘𝑋𝑞90𝑒2𝐾𝑖𝑘𝑋𝑞91𝑒3𝐾𝑖𝑘𝑋𝑞92𝑒4𝐾𝑖𝑘𝑋𝑞93𝑒1𝐾𝑖𝑘𝑋𝑞94𝑒2𝐾𝑖𝑘𝑋𝑞95𝑒3𝐾𝑖𝑘𝑋𝑞96𝑒4𝐾𝑖𝑘𝑋𝑞000097𝑒1𝐾𝑖𝑘𝑋𝑞98𝑒2𝐾𝑖𝑘𝑋𝑞99𝑒3𝐾𝑖𝑘𝑋𝑞100𝑒4𝐾𝑖𝑘𝑋𝑞101𝑒1𝐾𝑖𝑘𝑋𝑞102𝑒2𝐾𝑖𝑘𝑋𝑞103𝑒3𝐾𝑖𝑘𝑋𝑞104𝑒4𝐾𝑖𝑘𝑋𝑞0000105𝑒1𝐾𝑖𝑘𝑋𝑞106𝑒2𝐾𝑖𝑘𝑋𝑞107𝑒3𝐾𝑖𝑘𝑋𝑞108𝑒4𝐾𝑖𝑘𝑋𝑞109𝑒1𝐾𝑖𝑘𝑋𝑞110𝑒2𝐾𝑖𝑘𝑋𝑞111𝑒3𝐾𝑖𝑘𝑋𝑞112𝑒4𝐾𝑖𝑘𝑋𝑞000013𝑞14𝑞15𝑞16𝑞17𝑞18𝑞19𝑞20𝑞21𝑞22𝑞23𝑞24𝑞25𝑞26𝑞27𝑞28𝑞25𝑞26𝑞27𝑞28𝑞29𝑞30𝑞31𝑞32𝑞33𝑞34𝑞35𝑞36𝑞33𝑞34𝑞35𝑞36𝑞37𝑞38𝑞39𝑞40𝑞41𝑞42𝑞43𝑞44𝑞45𝑞46𝑞47𝑞48𝑞49𝑞50𝑞51𝑞52𝑞53𝑞54𝑞55𝑞56𝑞57𝑞58𝑞59𝑞60𝑞61𝑞62𝑞63𝑞64𝑞65𝑞66𝑞67𝑞68𝑞65𝑞66𝑞67𝑞68𝑞69𝑞70𝑞71𝑞72𝑞73𝑞74𝑞75𝑞76𝑞77𝑞78𝑞79𝑞80𝑞81𝑞82𝑞83𝑞84𝑞1𝑞2𝑞3𝑞4𝑞5𝑞6𝑞7𝑞8𝑞9𝑞10𝑞11𝑞12|||||||||||||||||=0.(5.28)

5.4. The Gravity Field, Initial Stress, and Magnetic Field Are Neglected and There Is Uncoupling between the Temperature and Strain Field

In this case 𝑔=0,𝑃=0,𝐻0=0, and 𝜃=0, we obtain𝛼2=Γ0(𝜆+2𝜇)𝜌,𝛽2=Γ0𝜇𝜌,lim𝜀0𝑚𝑗=12Ω𝑐𝑖𝑘𝑋2𝑗×𝛼𝑖𝑘2𝑘2𝑋4𝑗𝑘2𝑐22𝛼2+𝑖𝑘𝑐𝜒𝛼2Γ2+Ω2𝑋2𝑗+𝑖𝑘𝑐Γ2𝜒1𝛼2+Ω2𝑘2Ω2,lim𝛾0||||||||||𝑞22𝑞23𝑞24𝑞30𝑞31𝑞32𝑞38𝑞39𝑞40𝑞50𝑞51𝑞52𝑞62𝑞63𝑞64||||||||||=0.(5.29) Multiplying the rows 10, 11, and 12 of the determinant |𝑑𝑖𝑗| by 𝛾 and then taking lim𝛾0, (5.28) reduces, after some computation, to the following ninth-order determinant equation:|||||||||||||||||||𝑞85𝑒𝑖𝑘𝑋1𝐾𝑞86𝑒𝑖𝑘𝑋2𝐾𝑞87𝑒𝑖𝑘𝑋3𝐾𝑞88𝑒𝑖𝑘𝑋4𝐾𝑞85𝑒𝑖𝑘𝑋1𝐾𝑞86𝑒𝑖𝑘𝑋2𝐾𝑞87𝑒𝑖𝑘𝑋3𝐾𝑞88𝑒𝑖𝑘𝑋4𝐾0𝑞89𝑒𝑖𝑘𝑋1𝐾𝑞90𝑒𝑖𝑘𝑋2𝐾𝑞91𝑒𝑖𝑘𝑋3𝐾𝑞92𝑒𝑖𝑘𝑋4𝐾𝑞93𝑒𝑖𝑘𝑋1𝐾𝑞94𝑒𝑖𝑘𝑋2𝐾𝑞95𝑒𝑖𝑘𝑋3𝐾𝑞96𝑒𝑖𝑘𝑋4𝐾0𝑞97𝑒𝑖𝑘𝑋1𝐾𝑞98𝑒𝑖𝑘𝑋2𝐾𝑞99𝑒𝑖𝑘𝑋3𝐾𝑞100𝑒𝑖𝑘𝑋4𝐾𝑞101𝑒𝑖𝑘𝑋1𝐾𝑞102𝑒𝑖𝑘𝑋2𝐾𝑞103𝑒𝑖𝑘𝑋3𝐾𝑞104𝑒𝑖𝑘𝑋4𝐾0𝑞105𝑒𝑖𝑘𝑋1𝐾𝑞106𝑒𝑖𝑘𝑋2𝐾𝑞107𝑒𝑖𝑘𝑋3𝐾𝑞108𝑒𝑖𝑘𝑋4𝐾𝑞109𝑒𝑖𝑘𝑋1𝐾𝑞110𝑒𝑖𝑘𝑋2𝐾𝑞111𝑒𝑖𝑘𝑋3𝐾𝑞112𝑒𝑖𝑘𝑋4𝐾0𝑞13𝑞14𝑞15𝑞16𝑞17𝑞18𝑞19𝑞20𝑞21𝑞25𝑞26𝑞27𝑞28𝑞25𝑞26𝑞27𝑞28𝑞29𝑞33𝑞34𝑞35𝑞36𝑞33𝑞34𝑞35𝑞36𝑞37𝑞41𝑞42𝑞43𝑞44𝑞45𝑞46𝑞47𝑞48𝑞49𝑞53𝑞54𝑞55𝑞56𝑞57𝑞58𝑞59𝑞60𝑞61|||||||||||||||||||=0,(5.30)where 𝑞1=1𝑋1𝑚1,𝑞2=1𝑋2𝑚2,𝑞3=1𝑋3𝑚3,𝑞4=1𝑋4𝑚4,𝑞5=1+𝑋1𝑚1,𝑞6=1+𝑋2𝑚2,𝑞7=1+𝑋3𝑚3,𝑞8=1+𝑋4𝑚4,𝑞9=1+𝑋1𝑚1,𝑞10=1+𝑋2𝑚2,𝑞11=1+𝑋3𝑚3,𝑞12=1+𝑋4𝑚4,𝑞13=𝑋1+𝑚1,𝑞14=𝑋2+𝑚2,𝑞15=𝑋3+𝑚3,𝑞16=𝑋4+𝑚4,𝑞17=𝑚1𝑋1,𝑞18=𝑚2𝑋2,𝑞19=𝑚3𝑋3,𝑞20=𝑚4𝑋4,𝑞21=𝑚1𝑋1,𝑞22=𝑚2𝑋2,𝑞23=𝑚3𝑋3,𝑞24=𝑚4𝑋4,𝑞25=1𝑐𝑠1𝑘2𝛽2𝑚11+𝑋21𝑚1𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐26=1𝑐𝑠1𝑘2𝛽2𝑚41+𝑋24𝑚4𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐27=1𝑐𝑠1𝑘2𝛽2𝑚31+𝑋23𝑚3𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐28=1𝑐𝑠1𝑘2𝛽2𝑚41+𝑋24𝑚4𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐29=1𝑐𝑠1𝑘2𝛽2𝑚11+𝑋12𝑚1𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐30=1𝑐𝑠1𝑘2𝛽2𝑚21+𝑋22𝑚2𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐31=1𝑐𝑠1𝑘2𝛽2𝑚31+𝑋32𝑚3𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐32=1𝑐𝑠1𝑘2𝛽2𝑚41+𝑋42𝑚4𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐33=𝑀𝑋1𝑘2𝑚1𝑋21+1+1𝑖𝑘𝑐𝑠1𝑘2𝛽2𝑚11+𝑋21𝑚1𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐34=𝑀𝑋2𝑘2𝑚2𝑋22+1+1𝑖𝑘𝑐𝑠1𝑘2𝛽2𝑚21+𝑋22𝑚2𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐35=𝑀𝑋3𝑘2𝑚3𝑋23+1+1𝑖𝑘𝑐𝑠1𝑘2𝛽2𝑚31+𝑋23𝑚3𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐36=𝑀𝑋4𝑘2𝑚4𝑋24+1+1𝑖𝑘𝑐𝑠1𝑘2𝛽2𝑚41+𝑋24𝑚4𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐37=𝑀𝑋1𝑘2𝑚1𝑋12+1+1𝑖𝑘𝑐𝑠1𝑘2𝛽2𝑚11+𝑋12𝑚1𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐38=𝑀𝑋2𝑘2𝑚2𝑋22+1+1𝑖𝑘𝑐𝑠1𝑘2𝛽2𝑚21+𝑋22𝑚2𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐39=𝑀𝑋3𝑘2𝑚3𝑋32+1+1𝑖𝑘𝑐𝑠1𝑘2𝛽2𝑚31+𝑋32𝑚3𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐40=𝑀𝑋4𝑘2𝑚4𝑋42+1+1𝑖𝑘𝑐𝑠1𝑘2𝛽2𝑚41+𝑋42𝑚4𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐41=Γ0𝜆1𝑋1𝑚1+Γ0𝑋(𝜆+2𝜇)21+𝑚1𝑋1+𝜌𝛼21+𝑋21+𝑐2,𝑞42=Γ0𝜆1𝑋2𝑚2+Γ0𝑋(𝜆+2𝜇)22+𝑚2𝑋2+𝜌𝛼21+𝑋22+𝑐2,𝑞43=Γ0𝜆1𝑋3𝑚3+Γ0𝑋(𝜆+2𝜇)23+𝑚3𝑋3+𝜌𝛼21+𝑋23+𝑐2,𝑞44=Γ0𝜆1𝑋4𝑚4+Γ0𝑋(𝜆+2𝜇)24+𝑚4𝑋4+𝜌𝛼21+𝑋24+𝑐2,𝑞45=Γ0𝜆1+𝑋1𝑚1+Γ0𝑋(𝜆+2𝜇)21𝑚1𝑋1+𝜌𝛼21+𝑋21+𝑐2,𝑞46=Γ0𝜆1+𝑋2𝑚2+Γ0(𝑋𝜆+2𝜇)22𝑚2𝑋2+𝜌𝛼21+𝑋22+𝑐2,𝑞47=Γ0𝜆1+𝑋3𝑚3+Γ0𝑋(𝜆+2𝜇)23𝑚3𝑋3+𝜌𝛼21+𝑋23+𝑐2,𝑞48=Γ0𝜆1+𝑋4𝑚4+Γ0𝑋(𝜆+2𝜇)24𝑚4𝑋4+𝜌𝛼21+𝑋24+𝑐2,𝑞49=Γ0𝜆1+𝑋1𝑚1+Γ0𝜆+2𝜇𝑋12𝑚1𝑋1+𝜌𝛼21+𝑋12+𝑐2,𝑞50=Γ0𝜆1+𝑋2𝑚2+Γ0𝜆+2𝜇𝑋22𝑚2𝑋2+𝜌𝛼21+𝑋22+𝑐2,𝑞51=Γ0𝜆1+𝑋3𝑚3+Γ0𝜆+2𝜇𝑋32𝑚3𝑋3+𝜌𝛼21+𝑋32+𝑐2,𝑞52=Γ0𝜆1+𝑋4𝑚4+Γ0𝜆+2𝜇𝑋42𝑚4𝑋4+𝜌𝛼21+𝑋42+𝑐2,𝑞53=2𝑘2Γ0𝜇𝑋1𝑘2Γ0𝜇𝑚11𝑋21+𝐹𝑠1𝑘2𝛽2𝑚11+𝑋21𝑚1𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐54=2𝑘2Γ0𝜇𝑋2𝑘2Γ0𝜇𝑚21𝑋22+𝐹𝑠1𝑘2𝛽2𝑚21+𝑋22𝑚2𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐55=2𝑘2Γ0𝜇𝑋3𝑘2Γ0𝜇𝑚31𝑋23+𝐹𝑠1𝑘2𝛽2𝑚31+𝑋23𝑚3𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐56=2𝑘2Γ0𝜇𝑋4𝑘2Γ0𝜇𝑚41𝑋24+𝐹𝑠1𝑘2𝛽2𝑚41+𝑋24𝑚4𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐57=2𝑘2Γ0𝜇𝑋1𝑘2Γ0𝜇𝑚11𝑋21+𝐹𝑠1𝑘2𝛽2𝑚11+𝑋21𝑚1𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐58=2𝑘2Γ0𝑋2𝑘2Γ0𝜇𝑚21𝑋22+𝐹𝑠1𝑘2𝛽2𝑚21+𝑋22𝑚2𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐59=2𝑘2Γ0𝜇𝑋3𝑘2Γ0𝜇𝑚31𝑋23+𝐹𝑠1𝑘2𝛽2𝑚31+𝑋23𝑚3𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐60=2𝑘2Γ0𝜇𝑋4𝑘2Γ0𝜇𝑚41𝑋24+𝐹𝑠1𝑘2𝛽2𝑚41+𝑋24𝑚4𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐61=2𝑘2Γ0𝜇𝑋1𝑘2Γ0𝜇𝑚11𝑋12+𝐹𝑠1𝑘2𝛽2𝑚11+𝑋12𝑚1𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐62=2𝑘2Γ0𝜇𝑋2𝑘2Γ0𝜇𝑚21𝑋22+𝐹𝑠1𝑘2𝛽2𝑚21+𝑋22𝑚2𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐63=2𝑘2Γ0𝜇𝑋3𝑘2Γ0𝜇𝑚31𝑋32+𝐹𝑠1𝑘2𝛽2𝑚31+𝑋32𝑚3𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐64=2𝑘2Γ0𝜇𝑋4𝑘2Γ0𝜇𝑚41𝑋42+𝐹𝑠1𝑘2𝛽2𝑚41+𝑋42𝑚4𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐65=𝜌𝛾𝛼2𝑘2𝑋21+1+𝑘2𝑐2,𝑞66=𝜌𝛾𝛼2𝑘2𝑋22+1+𝑘2𝑐2,𝑞67=𝜌𝛾𝛼2𝑘2𝑋23+1+𝑘2𝑐2,𝑞68=𝜌𝛾𝛼2𝑘2𝑋24+1+𝑘2𝑐2,𝑞69=𝜌𝛾𝛼2𝑘2𝑋12+1+𝑘2𝑐2,𝑞70=𝜌𝛾𝛼2𝑘2𝑋22+1+𝑘2𝑐2,𝑞71=𝜌𝛾𝛼2𝑘2𝑋32+1+𝑘2𝑐2,𝑞72=𝜌𝛾𝛼2𝑘2𝑋42+1+𝑘2𝑐2,𝑞73=𝜌𝛾𝛼2𝑘2𝑋21+1+𝑘2𝑐2𝑖𝑘𝑋1,𝑞74=𝜌𝛾𝛼2𝑘2𝑋22+1+𝑘2𝑐2𝑖𝑘𝑋2,𝑞75=𝜌𝛾𝛼2𝑘2𝑋23+1+𝑘2𝑐2𝑖𝑘𝑋3,𝑞76=𝜌𝛾𝛼2𝑘2𝑋24+1+𝑘2𝑐2𝑖𝑘𝑋4,𝑞77=𝜌𝛾𝛼2𝑘2𝑋21+1+𝑘2𝑐2𝑖𝑘𝑋1,𝑞78=𝜌𝛾𝛼2𝑘2𝑋22+1+𝑘2𝑐2𝑖𝑘𝑋2,𝑞79=𝜌𝛾𝛼2𝑘2𝑋23+1+𝑘2𝑐2𝑖𝑘𝑋3,𝑞80=𝜌𝛾𝛼2𝑘2𝑋24+1+𝑘2𝑐2𝑖𝑘𝑋4,𝑞81=𝜌𝛾𝛼2𝑘2𝑋12+1+𝑘2𝑐2𝑖𝑘𝑋1,𝑞82=𝜌𝛾𝛼2𝑘2𝑋22+1+𝑘2𝑐2𝑖𝑘𝑋2,𝑞83=𝜌𝛾𝛼2𝑘2𝑋32+1+𝑘2𝑐2𝑖𝑘𝑋3,𝑞84=𝜌𝛾𝛼2𝑘2𝑋32+1+𝑘2𝑐2𝑖𝑘𝑋3,𝑞85=𝑀𝑋1𝑘2𝑚1𝑋21+1+1𝑖𝑘𝑐𝑠1𝑘2𝛽2𝑚11+𝑋21𝑚1𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐86=𝑀𝑋2𝑘2𝑚𝑗𝑋22+1+1𝑖𝑘𝑐𝑠1𝑘2𝛽2𝑚21+𝑋22𝑚2𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐87=𝑀𝑋3𝑘2𝑚𝑗𝑋23+1+1𝑖𝑘𝑐𝑠1𝑘2𝛽2𝑚31+𝑋23𝑚3𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐88=𝑀𝑋4𝑘2𝑚4𝑋24+1+1𝑖𝑘𝑐𝑠1𝑘2𝛽2𝑚41+𝑋24𝑚4𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐89=Γ0𝜆1𝑋1𝑚1+Γ0𝑋(𝜆+2𝜇)21+𝑚1𝑋1+𝜌𝛼21+𝑋21+𝑐2,𝑞90=Γ0𝜆1𝑋2𝑚2+Γ0𝑋(𝜆+2𝜇)22+𝑚2𝑋2+𝜌𝛼21+𝑋22+𝑐2,𝑞91=Γ0𝜆1𝑋3𝑚3+Γ0(𝑋𝜆+2𝜇)23+𝑚3𝑋3+𝜌𝛼21+𝑋23+𝑐2,𝑞92=Γ0𝜆1𝑋4𝑚4+Γ0𝑋(𝜆+2𝜇)24+𝑚4𝑋4+𝜌𝛼21+𝑋24+𝑐2,𝑞93=Γ0𝜆1+𝑋1𝑚1+Γ0𝑋(𝜆+2𝜇)21𝑚1𝑋1+𝜌𝛼21+𝑋21+𝑐2,𝑞94=Γ0𝜆1+𝑋2𝑚2+Γ0𝑋(𝜆+2𝜇)22𝑚2𝑋2+𝜌𝛼21+𝑋22+𝑐2,𝑞95=Γ0𝜆1+𝑋3𝑚3+Γ0(𝑋𝜆+2𝜇)23𝑚3𝑋3+𝜌𝛼21+𝑋23+𝑐2,𝑞96=Γ0𝜆1+𝑋4𝑚4+Γ0𝑋(𝜆+2𝜇)24𝑚4𝑋4+𝜌𝛼21+𝑋24+𝑐2,𝑞97=2𝑘2Γ0𝜇𝑋1𝑘2Γ0𝜇𝑚11𝑋21+𝐹𝑠1𝑘2𝛽2𝑚11+𝑋21𝑚1𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐98=2𝑘2Γ0𝜇𝑋2𝑘2Γ0𝜇𝑚21𝑋2𝑗+𝐹𝑠1𝑘2𝛽2𝑚21+𝑋22𝑚2𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐99=2𝑘2Γ0𝜇𝑋3𝑘2Γ0𝜇𝑚31𝑋23+𝐹𝑠1𝑘2𝛽2𝑚31+𝑋23𝑚3𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐100=2𝑘2Γ0𝜇𝑋4𝑘2Γ0𝜇𝑚41𝑋24+𝐹𝑠1𝑘2𝛽2𝑚41+𝑋24𝑚4𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐101=2𝑘2Γ0𝜇𝑋1𝑘2Γ0𝜇𝑚11𝑋21+𝐹𝑠1𝑘2𝛽2𝑚11+𝑋21𝑚1𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐102=2𝑘2Γ0𝜇𝑋2𝑘2Γ0𝜇𝑚21𝑋22+𝐹𝑠1𝑘2𝛽2𝑚21+𝑋22𝑚2𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐103=2𝑘2Γ0𝜇𝑋3𝑘2Γ0𝜇𝑚31𝑋23+𝐹𝑠1𝑘2𝛽2𝑚31+𝑋23𝑚3𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐104=2𝑘2Γ0𝜇𝑋4𝑘2Γ0𝜇𝑚41𝑋24+𝐹𝑠1𝑘2𝛽2𝑚41+𝑋24𝑚4𝑘2𝑐2+Ω2,𝑞+2𝑖𝑘Ω𝑐105=𝛼2𝑘2𝑋21+1+𝑘2𝑐2𝑖𝑘𝑋1,𝑞106=𝛼2𝑘2𝑋22+1+𝑘2𝑐2𝑖𝑘𝑋2,𝑞107=𝛼2𝑘2𝑋23+1+𝑘2𝑐2𝑖𝑘𝑋3,𝑞108=𝛼2𝑘2𝑋24+1+𝑘2𝑐2𝑖𝑘𝑋4,𝑞109=𝛼2𝑘2𝑋21+1𝑘2𝑐2𝑖𝑘𝑋1,𝑞110=𝛼2𝑘2𝑋22+1𝑘2𝑐2𝑖𝑘𝑋2,𝑞111=𝛼2𝑘2𝑋23+1𝑘2𝑐2𝑖𝑘𝑋3,𝑞112=𝛼2𝑘2𝑋24+1𝑘2𝑐2𝑖𝑘𝑋4.(5.31)

From (5.30), we can determine by numerical effects the initial stress, gravity field, friction coefficient, magnetic field, and rotation, for a computation using the maple program; we use sandstone as a granular medium and nephiline as a granular layer taking into consideration that the relaxation times 𝜏0=0.1,𝜏1=0.4, and 𝜏2=0.5, the friction coefficient 𝐹=0.4, and the third elastic constant 𝑀=0.2.

(i) Effects of the initial stress, gravity field, friction coefficient, magnetic field, relaxation time, and rotation are discussed in Figures 2 and 3.

(ii) From (5.30), if the initial stress are neglected, we can discuss the effects of the gravity field, friction coefficient, magnetic field, relaxation time, and rotation, and the discussion is clear up from Figure 4.

(iii) From (5.30), if the initial stress and magnetic field are neglected, we can discuss the effects of the gravity field, friction coefficient, relaxation time and rotation, and the discussion is clear up from Figure 5.

(iv) From (5.30), if the initial stress, magnetic field, and gravity field are neglected, we can discuss the effects of the friction coefficient, relaxation time, and rotation, and the discussion is clear up from Figure 6.

(v) From (5.30), if the initial stress, magnetic field, and gravity field are neglected and there is uncoupling between the temperature and strain field, we can discuss the effects the friction coefficient, relaxation time, rotation, and the discussion is clear up from Figure 7.

6. Numerical Results and Discussion

In order to illustrate theoretical results obtained in the proceeding section, we now present some numerical results. The material chosen for this purpose of Carbon steel, the physical data is given [21] as follows:𝜌=2kgm3,𝜆=9.3×1010Nm1,𝜇=8.4×1010Nm1,𝑇0=293.1k,𝐾=50Wm1k1,𝑠=6.4×102JKg1,𝛼𝑡=13.2×106deg1.(6.1)

6.1. Effects of the Initial Stress, Gravity Field, Friction Coefficient, Magnetic Field, Relaxation Time, and Rotation

Figure 2 shows the velocity of Rayleigh waves (Re) and attenuation coefficient (Im) under the effect of gravity field, friction coefficient, magnetic field, relaxation time, and rotation with respect to the initial stress; we found that the velocity of Rayleigh waves (Re) and attenuation coefficient (Im) increased with increasing values of 𝑝 and 𝐻0, and the velocity of Rayleigh waves (Re) and attenuation coefficient (Im) decreased and increased with increasing values of 𝑔 and 𝐾, respectively; while the values of (Re) and (Im) take one curve at another value of the relaxation time 𝜏1 increased with increasing values of initial stresse 𝑃.

Figure 3 shows the velocity of Rayleigh waves (Re) and attenuation coefficient (Im) under effect of initial stress, gravity field, friction coefficient, magnetic field, relaxation time and rotation with respect to the wave number, we find that the velocity of Rayleigh waves (Re) and attenuation coefficient (Im) decreased and increased with increasing values of 𝐻0, respectively, and the velocity of Rayleigh waves (Re) and attenuation coefficient (Im) increased and decreased with increasing values of Ω and 𝑔, respectively; also, the values of (Re) and (Im) increased with increasing values of 𝐾, while the values of (Re) and (Im) take one curve at another value of the relaxation time 𝜏1, decreased with increasing values of wave number 𝑘.

6.2. If the Initial Stresses Are Neglected

Figure 4 shows the velocity of Rayleigh waves (Re) and attenuation coefficient (Im) under effect of gravity field, friction coefficient, magnetic field, relaxation time, and rotation with respect to the wave number, we find that the velocity of Rayleigh waves (Re) and attenuation coefficient (Im) decreased with increasing values of 𝐻0 and Ω, while that contrary with increasing values of 𝑔; also, the values of (Re) and (Im) increased and decreased with increasing values of 𝐾, respectively, while the values of (Re) and (Im) take one curve at another value of the relaxation time 𝜏1 decreased, then increased with increasing values of wave number 𝑘.

6.3. If the Initial Stresses and Magnetic Field Are Neglected

Figure 5 shows that the velocity of Rayleigh waves (Re) and attenuation coefficient (Im) under effect of gravity field, friction coefficient, relaxation time, and rotation with respect to the wave number; we find that the velocity of Rayleigh waves (Re) and attenuation coefficient (Im) decreased and increased with increasing values of Ω, and the values of (Re) and (Im) increased with increasing values of g, while that contrary with increasing values of 𝐾; also, the values of (Re) and (Im) take one curve at another value of the relaxation time 𝜏1, increased, then decreased with increasing values of wave number 𝑘.

6.4. If the Initial Stresses, Magnetic Field, and Gravity Field Are Neglected

Figure 6 shows the velocity of Rayleigh waves (Re) and attenuation coefficient (Im) under the effect of friction coefficient, relaxation time, and rotation with respect to the wave number; we find that the velocity of Rayleigh waves (Re) and attenuation coefficient (Im) decreased and increased with increasing Ω, and the values of (Re) and (Im) decreased with increasing values of 𝐾, while the values of (Re) and (Im) take one curve at another value of the relaxation time 𝜏1, decreased and increased with increasing values of the wave number 𝑘, respectively.

6.5. If the Initial Stresses, Magnetic Field, and Gravity Field Are Neglected and There Is Uncoupling between the Temperature and Strain Field

Figure 7 shows the velocity of Rayleigh waves (Re) and attenuation coefficient (Im) under the effect of friction coefficient, relaxation time, and rotation with respect to the wave number; we find that the velocity of Rayleigh waves (Re) and attenuation coefficient (Im) increased and decreased with increasing of Ω, respectively, while that contrary with increasing values of 𝐾; finally, the values of (Re) and (Im) take one curve at another value of the relaxation time 𝜏1, decreased with increasing, the values of the wave number 𝑘.

7. Conclusions

The problem of the Rayleigh waves in generalized magneto-thermo-viscoelastic granular medium under the influence of rotation, gravity field, and initial stress is considered, and the frequency equation of the wave motion in the explicit form is derived, by considering various special cases. The numerical results are obtained for carbon-steel material, although the effect of the rotation, magnetic field, relaxation times, initial stress, gravity field, and friction coefficient is observed to be quite large on wave propagation of Rayleigh wave velocity (Re) and attenuation coefficient (Im).

The problem of the Rayleigh waves in generalized magneto-thermo-viscoelastic granular medium under the influence of rotation, gravity field, and initial stress is considered, and the frequency equation of the wave motion in the explicit form is derived, by considering various special cases. The numerical results are obtained for carbon-steel material, although the effect of the rotation, magnetic field, relaxation times, initial stress, gravity field, and friction coefficient is observed to be quite large on wave propagation of Rayleigh wave velocity (Re) and attenuation coefficient (Im).

It is easy to see that the values of (Re) and (Im) with respect to the initial stress are increased with increasing values of Ω, while that contrary if the initial stress are neglected and with respect to the wave number; also, if the initial stress are constant with respect to the wave number the values of (Re) and (Im) increased and decreased with increasing values of Ω, respectively, and if the initial stress and the magnetic field are neglected, the values of (Re) and (Im) decreased and increased with increasing values of Ω, respectively, while that contrary if 𝑃,𝐻0,𝑔,𝜃, and 𝜀 are neglected and with respect to the wave number; finally, if 𝑃,𝐻0, and 𝑔 are neglected and with respect to the wave number, the values of (Re) and (Im) increased with increasing values of Ω.

It is easy to see that the values of (Re) and (Im) with respect to the initial stress are decreased and increased with increasing values of 𝑔, respectively, while that contrary if the initial stress are constant and with respect to the wave number; also, if the initial stress are neglected and if the initial stress and the magnetic field are neglected with respect to the wave number, the values of (Re) and (Im) increased with increasing values of 𝑔.

It is easy to see that the values of (Re) and (Im) with respect to the initial stress are decreased and increased with increasing values of 𝐾, respectively, while that contrary if the initial stress are neglected and with respect to the wave number; also, if the initial stress and the magnetic field are neglected and if 𝑃,𝐻0, and 𝑔 are neglected with respect the wave number, the values of (Re) and (Im) decreased with increasing values of 𝐾; finally, if 𝑃,𝐻0,𝑔,𝜃, and 𝜀 are neglected and with respect to the wave number, the values of (Re) and (Im) decreased and increased with increasing values of 𝐾.

Finally, the frequency equation has been discussed under effect of rotation, gravity field, and initial stress and in case of various classical and nonclassical theories of thermoelasticity. The results indicate that the effect of rotation, magnetic field, initial stress, and gravity field is very pronounced. The frequency equations derived in this paper may be useful in practical applications. It is concluded from the above analyses and results that the present solution is accurate and reliable and the method is simple and effective. So it may be as a reference to solve other problems of Rayleigh waves in generalized magneto-thermoelastic granular medium.