About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2011 (2011), Article ID 895386, 19 pages
http://dx.doi.org/10.1155/2011/895386
Research Article

A New Reduced Stabilized Mixed Finite-Element Method Based on Proper Orthogonal Decomposition for the Transient Navier-Stokes Equations

1School of Applied Science, Beijing Information Science and Technology University, Beijing 100192, China
2Department of Mathematics, Baoji University of Arts and Sciences, Baoji 721007, China
3College of Global Change and Earth System Science, Beijing Normal University, Beijing 100009, China
4Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

Received 31 May 2011; Accepted 15 August 2011

Academic Editor: Jan Sladek

Copyright © 2011 Aiwen Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, vol. 5 of Springer Series in Computational Mathematics, Springer, New York, NY, USA, 1986. View at Zentralblatt MATH
  2. J. G. Heywood and R. Rannacher, “Finite element approximation of the nonstationary Navier-Stokes problem: I. Regularity of solutions and second-order error estimates for spatial discretization,” SIAM Journal on Numerical Analysis, vol. 19, no. 2, pp. 275–311, 1982. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  3. Z. H. Luo, “The third order estimate of mixed finite element for the Navier-Stokes problems,” Chinese Quarterly Journal of Mathematics, vol. 10, pp. 9–12, 1995.
  4. K. Fukunaga, Introduction to Statistical Pattern Recognition, Computer Science and Scientific Computing, Academic Press, New York, NY, USA, 2nd edition, 1990.
  5. I. T. Jolliffe, Principal Component Analysis, Springer Series in Statistics, Springer, New York, NY, USA, 2nd edition, 2002.
  6. P. Holmes, J. L. Lumley, and G. Berkooz, Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge Monographs on Mechanics, Cambridge University Press, Cambridge, UK, 1996. View at Publisher · View at Google Scholar
  7. P. Moin and R. D. Moser, “Characteristic-eddy decomposition of turbulence in a channel,” Journal of Fluid Mechanics, vol. 200, pp. 471–509, 1989. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  8. M. Rajaee, S. K. F. Karlsson, and L. Sirovich, “Low-dimensional description of free-shear-flow coherent structures and their dynamical behaviour,” Journal of Fluid Mechanics, vol. 258, pp. 1–29, 1994. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  9. R. D. Joslin, M. D. Gunzburger, R. A. Nicolaides, G. Erlebacher, and M. Y. Hussaini, “A self-contained automated methodology for optimal flow control validated for transition delay,” AIAA Journal, vol. 35, no. 5, pp. 816–824, 1997. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  10. H. V. Ly and H. T. Tran, “Proper orthogonal decomposition for flow calculations and optimal control in a horizontal CVD reactor,” Quarterly of Applied Mathematics, vol. 60, no. 4, pp. 631–656, 2002. View at Zentralblatt MATH
  11. X. J. Tian and Z. H. Xie, “An explicit four-dimensional variational data assimilation method based on the proper orthogonal decomposition: theoretics and evaluation,” Science in China D, vol. 52, no. 2, pp. 279–286, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Lumley, “Coherent structures in turbulence,” in Transition and Turbulence, R. E. Meyer, Ed., Academic Press, New York, NY, USA, 1981. View at Zentralblatt MATH
  13. N. Aubry, P. Holmes, J. L. Lumley, and E. Stone, “The dynamics of coherent structures in the wall region of a turbulent boundary layer,” Journal of Fluid Mechanics, vol. 192, pp. 115–173, 1988. View at Publisher · View at Google Scholar
  14. L. Sirovich, “Turbulence and the dynamics of coherent structures: part I–III,” Quarterly of Applied Mathematics, vol. 45, no. 3, pp. 561–590, 1987. View at Zentralblatt MATH
  15. K. Kunisch and S. Volkwein, “Galerkin proper orthogonal decomposition methods for parabolic problems,” Numerische Mathematik, vol. 90, no. 1, pp. 117–148, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  16. K. Kunisch and S. Volkwein, “Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics,” SIAM Journal on Numerical Analysis, vol. 40, no. 2, p. 492–515 (electronic), 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  17. Z. D. Luo, R. W. Wang, and J. Zhu, “Finite difference scheme based on proper orthogonal decomposition for the nonstationary Navier-Stokes equations,” Science in China A, vol. 50, no. 8, pp. 1186–1196, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  18. Z. D. Luo, J. Chen, I. M. Navon, and X. Z. Yang, “Mixed finite element formulation and error estimates based on proper orthogonal decomposition for the nonstationary Navier-Stokes equations,” SIAM Journal on Numerical Analysis, vol. 47, no. 1, pp. 1–19, 2008. View at Publisher · View at Google Scholar
  19. Z. D. Luo, J. Chen, P. Sun, and X. Z. Yang, “Finite element formulation based on proper orthogonal decomposition for parabolic equations,” Science in China A, vol. 52, no. 3, pp. 585–596, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  20. Z. D. Luo, X. Z. Yang, and Y. J. Zhou, “A reduced finite element formulation based on proper orthogonal decomposition for Burgers equation,” Applied Numerical Mathematics, vol. 59, no. 8, pp. 1933–1946, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  21. Y. H. Cao, J. Zhu, Z. D. Luo, and I. M. Navon, “Reduced-order modeling of the upper tropical Pacific Ocean model using proper orthogonal decomposition,” Computers & Mathematics with Applications, vol. 52, no. 8-9, pp. 1373–1386, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  22. Y. H. Cao, J. Zhu, I. M. Navon, and Z. D. Luo, “A reduced-order approach to four-dimensional variational data assimilation using proper orthogonal decomposition,” International Journal for Numerical Methods in Fluids, vol. 53, no. 10, pp. 1571–1583, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. Z. D. Luo, J. Zhu, R. W. Wang, and I. M. Navon, “Proper orthogonal decomposition approach and error estimation of mixed finite element methods for the tropical Pacific Ocean reduced gravity model,” Computer Methods in Applied Mechanics and Engineering, vol. 196, no. 41–44, pp. 4184–4195, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  24. Z. D. Luo, J. Chen, J. Zhu, R. W. Wang, and I. M. Navon, “An optimizing reduced order FDS for the tropical Pacific Ocean reduced gravity model,” International Journal for Numerical Methods in Fluids, vol. 55, no. 2, pp. 143–161, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  25. R. W. Wang, J. Zhu, Z. D. Luo, and I. M. Navon, “An equation-free reduced order modeling approach to tropic Pacific simulation,” Advances in Geosciences, vol. 12, pp. 1–16, 2007. View at Publisher · View at Google Scholar
  26. J. Du, J. Zhu, Z. D. Luo, and I. M. Navon, “An optimizing finite difference scheme based on proper orthogonal decomposition for CVD equations,” International Journal for Numerical Methods in Biomedical Engineering, vol. 27, no. 1, pp. 78–94, 2011. View at Publisher · View at Google Scholar
  27. H. L. Yu and H. J. Chu, “Understanding space-time patterns of groundwater system by empirical orthogonal functions: a case study in the Choshui River alluvial fan, Taiwan,” Journal of Hydrology, vol. 381, no. 3-4, pp. 239–247, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Bernard, O. Krol, H. Linke, and T. Rauschenbach, “Optimal management of regional water supply systems using a reduced finite-element groundwater model,” Automatisierungstechnik, vol. 57, no. 12, pp. 593–600, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Li and Y. N. He, “A stabilized finite element method based on two local Gauss integrations for the Stokes equations,” Journal of Computational and Applied Mathematics, vol. 214, no. 1, pp. 58–65, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  30. J. Li, Y. N. He, and Z. X. Chen, “A new stabilized finite element method for the transient Navier-Stokes equations,” Computer Methods in Applied Mechanics and Engineering, vol. 197, no. 1–4, pp. 22–35, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  31. J. Li, Finite element methods for the two-dimensional impressible Navier-Stokes equations, Ph.D. thesis, Xi'an Jiaotong University, 2007. View at Zentralblatt MATH
  32. S. Li and Y. R. Hou, “A fully discrete stabilized finite element method for the time-dependent Navier-Stokes equations,” Applied Mathematics and Computation, vol. 215, no. 1, pp. 85–99, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  33. P. B. Bochev, C. R. Dohrmann, and M. D. Gunzburger, “stabilization of low-order mixed finite elements,” SIAM Journal on Numerical Analysis, vol. 42, pp. 1189–1208, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  34. A. W. Wang and J. Li, “Stabilization of the lowest-order mixed finite elements for the steady Navier-Stokes equations,” Chinese Journal of Engineering Mathematics, vol. 17, pp. 249–257, 2010.
  35. Y. N. He, A. W. Wang, and L. Q. Mei, “Stabilized finite-element method for the stationary Navier-Stokes equations,” Journal of Engineering Mathematics, vol. 51, no. 4, pp. 367–380, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  36. T. J. R. Hughes, L. P. Franca, and M. Balestra, “A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuska-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations,” Computer Methods in Applied Mechanics and Engineering, vol. 59, no. 1, pp. 85–99, 1986. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  37. T. J. R. Hughes and L. P. Franca, “A new finite element formulation for computational fluid dynamics: VII. The Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces,” Computer Methods in Applied Mechanics and Engineering, vol. 65, no. 1, pp. 85–96, 1987. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  38. J. Douglas and J. P. Wang, “An absolutely stabilized finite element method for the Stokes problem,” Mathematics of Computation, vol. 52, no. 186, pp. 495–508, 1989. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  39. C. Johnson and J. Saranen, “Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations,” Mathematics of Computation, vol. 47, no. 175, pp. 1–18, 1986. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  40. B. Kragel, Streamline diffusion POD models in optimization, Ph.D. thesis, Universitat Trier, 2005.
  41. P. Hansbo and A. Szepessy, “A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equations,” Computer Methods in Applied Mechanics and Engineering, vol. 84, no. 2, pp. 175–192, 1990. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  42. M. A. Behr, L. P. Franca, and T. E. Tezduyar, “Stabilized finite element methods for the velocity-pressure-stress formulation of incompressible flows,” Computer Methods in Applied Mechanics and Engineering, vol. 104, no. 1, pp. 31–48, 1993. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  43. J. Blasco and R. Codina, “Space and time error estimates for a first order, pressure stabilized finite element method for the incompressible Navier-Stokes equations,” Applied Numerical Mathematics, vol. 38, no. 4, pp. 475–497, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  44. R. Codina and J. Blasco, “Analysis of a pressure-stabilized finite element approximation of the stationary Navier-Stokes equations,” Numerische Mathematik, vol. 87, no. 1, pp. 59–81, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  45. Z. D. Luo, J. Du, Z. Xie, and Y. Guo, “A reduced stabilized mixed finite element formulation based on proper orthogonal decomposition for the non-stationary Navier-Stokes equations,” International Journal for Numerical Methods in Engineering, vol. 88, no. 1, pp. 31–46, 2011. View at Publisher · View at Google Scholar
  46. R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, vol. 2 of Studies in Mathematics and its Applications, North-Holland, Amsterdam, The Netherlands, 3rd edition, 1984.