About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2011 (2011), Article ID 927876, 28 pages
Research Article

Exact Solution for the Time-Dependent Temperature Field in Dry Grinding: Application to Segmental Wheels

1Cátedra Energesis de Tecnología Interdisciplinar, Universidad Católica de Valencia, 46002 Valencia, Spain
2Departamento de Matemáticas, Universidad de Pinar del Río, 20200 Pinar del Río, Cuba
3Instituto Universitario de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, 46022 Valencia, Spain

Received 21 February 2011; Accepted 1 April 2011

Academic Editor: Ezzat G. Bakhoum

Copyright © 2011 J. L. González-Santander et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Malkin, Grinding Technology: Theory and Applications of Machining with Abrasives, Ellis Horwood Ltd. and John Wiley and Sons, 1989.
  2. C. Guo and S. Malkin, “Analysis of energy partition in grinding,” Journal of Engineering for Industry, vol. 117, pp. 55–61, 1995. View at Publisher · View at Google Scholar
  3. S. Malkin and R. B. Anderson, “Thermal aspects of grinding: 1—energy partition,” Journal of Engineering for Industry, vol. 96, no. 4, pp. 1177–1183, 1974.
  4. A. S. Lavine and B. F. von Turkovich, “Thermal aspects of grinding: the effect of heat generation at the shear planes,” CIRP Annals, vol. 40, no. 1, pp. 343–345, 1991. View at Publisher · View at Google Scholar
  5. A. S. Lavine, “An exact solution for surface temperature in down grinding,” International Journal of Heat and Mass Transfer, vol. 43, no. 24, pp. 4447–4456, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  6. M. Mahdi and Liangchi Zhang, “The finite element thermal analysis of grinding processes by ADINA,” Computers & Structures, vol. 56, no. 2-3, pp. 313–320, 1995, Proceedings of the 10th ADINA Conference of Nonlinear Finite Element Analysis and ADINA. View at Publisher · View at Google Scholar
  7. A. G. Mamalis, D. E. Manolakos, A. Markopoulos, J. Kundrák, and K. Gyáni, “Thermal modelling of surface grinding using implicit finite element techniques,” International Journal of Advanced Manufacturing Technology, vol. 21, no. 12, pp. 929–934, 2003. View at Publisher · View at Google Scholar
  8. K. T. Andrews, M. Shillor, and S. Wright, “A model for heat transfer in grinding,” Nonlinear Analysis, vol. 35, no. 2, pp. 233–246, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. D. L. Skuratov, Yu. L. Ratis, I. A. Selezneva, J. Pérez, P. Fernández de Córdoba, and J. F. Urchueguía, “Mathematical modelling and analytical solution for workpiece temperature in grinding,” Applied Mathematical Modelling, vol. 31, no. 6, pp. 1039–1047, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  10. I. S. Gradsthteyn and I. M. Ryzhik, Table of Integrals, Series and Products, Academic Press, New York, NY, USA, 7th edition, 2007.
  11. J. L. González-Santander, J. Pérez, P. Fernández de Córdoba, and J. M. Isidro, “An analysis of the temperature field of the workpiece in dry continuous grinding,” Journal of Engineering Mathematics, vol. 67, no. 3, pp. 165–174, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  12. J. C. Jaeger, “Moving sources of heat and the temperature at sliding contracts,” The Royal Society of New South Wales, vol. 76, pp. 204–224, 1942.
  13. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, NBS Applied Mathematics Series 55, NBS, Washington, DC, USA, 1972.
  14. J. L. González-Santander, Modelización matemática de la transmisión de calor en el proceso del rectificado industrial plano, Ph.D. thesis, Universidad Politécnica de Valencia, Valencia, Spain, 2009, http://hdl.handle.net/10251/4769.
  15. R. M. Corless, D. J. Jeffrey, and D. E. Knuth, “A sequence of series for the Lambert W function,” in Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation, pp. 197–204, ACM Press, Maui, Hawaii, USA, July 1997.
  16. S. G. Glasunov and V. N. Moiseev, Constructional Titanium Alloys, Metallurgy, Moscow, Moscow, Russia, 1974.