About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2011 (2011), Article ID 938454, 12 pages
http://dx.doi.org/10.1155/2011/938454
Research Article

Enhanced Cryptography by Multiple Chaotic Dynamics

1Shenzhen City Key Laboratory of Embedded System Design, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China
2Department of Electronic Engineering, City University of Hong Kong, Hong Kong

Received 1 December 2010; Accepted 22 December 2010

Academic Editor: Ming Li

Copyright © 2011 Jianyong Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. E. Borujeni and M. Eshghi, “Chaotic image encryption design using Tompkins-Paige algorithm,” Mathematical Problems in Engineering, vol. 2009, Article ID 762652, 22 pages, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  2. K. W. Wong and C. H. Yuen, “Embedding compression in chaos-based cryptography,” IEEE Transactions on Circuits and Systems II, vol. 55, no. 11, pp. 1193–1197, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. C. P. Wu and C. C. J. Kuo, “Design of integrated multimedia compression and encryption systems,” IEEE Transactions on Multimedia, vol. 7, no. 5, pp. 828–839, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Li and J. Zhang, “A secure and efficient entropy coding based on arithmetic coding,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 12, pp. 4304–4318, 2009. View at Publisher · View at Google Scholar
  5. J. Zhou, O. C. Au, and P. H. W. Wong, “Adaptive chosen-ciphertext attack on secure arithmetic coding,” IEEE Transactions on Signal Processing, vol. 57, no. 5, pp. 1825–1838, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. M. S. Baptista, “Cryptography with chaos,” Physics Letters A, vol. 240, no. 1-2, pp. 50–54, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  7. G. Álvarez, F. Montoya, M. Romera, and G. Pastor, “Cryptanalysis of an ergodic chaotic cipher,” Physics Letters A, vol. 311, no. 2-3, pp. 172–179, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  8. G. Álvarez, F. Montoya, M. Romera, and G. Pastor, “Cryptanalysis of dynamic look-up table based chaotic cryptosystems,” Physics Letters A, vol. 326, no. 3-4, pp. 211–218, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  9. J. Wei, X. Liao, K. W. Wong, T. Zhou, and Y. Deng, “Analysis and improvement for the performance of Baptista's cryptographic scheme,” Physics Letters A, vol. 354, no. 1-2, pp. 101–109, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Li, G. Chen, K. W. Wong, X. Mou, and Y. Cai, “Baptista-type chaotic cryptosystems: Problems and countermeasures,” Physics Letters A, vol. 332, no. 5-6, pp. 368–375, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. I. Dalkiran and K. Danişman, “Artificial neural network based chaotic generator for cryptology,” Turkish Journal of Electrical Engineering and Computer Sciences, vol. 18, no. 2, pp. 225–240, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Singh and A. Sinha, “Chaos based multiple image encryption using multiple canonical transforms,” Optics and Laser Technology, vol. 42, no. 5, pp. 724–731, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. H. H. Nien, W. T. Huang, C. M. Hung et al., “Hybrid image encryption using multi-chaos-system,” in Proceedings of the 7th International Conference on Information, Communications and Signal Processing (ICICS '09), pp. 1–5, December 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. J. He, H. Qian, Y. Zhou, and Z. Li, “Cryptanalysis and improvement of a block cipher based on multiple chaotic systems,” Mathematical Problems in Engineering, vol. 2010, Article ID 590590, 14 pages, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  15. L. A. Aguirre and C. Letellier, “Modeling nonlinear dynamics and chaos: a review,” Mathematical Problems in Engineering, vol. 2009, Article ID 238960, 35 pages, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  16. S. Y. Chen and Y. F. Li, “Determination of stripe edge blurring for depth sensing,” IEEE Sensors Journal, vol. 11, no. 2, pp. 389–390, 2011. View at Publisher · View at Google Scholar
  17. S. Y. Chen, et al., “Improved generalized belief propagation for vision processing,” Mathematical Problems in Engineering, vol. 2011, Article ID 416963, 12 pages, 2011. View at Publisher · View at Google Scholar
  18. B. B. Mandelbrot, Gaussian Self-Affinity and Fractals, Springer, New York, NY, USA, 2002.
  19. C. Cattani, “Harmonic wavelet approximation of random, fractal and high frequency signals,” Telecommunication Systems, vol. 43, no. 3-4, pp. 207–217, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. E. G. Bakhoum and C. Toma, “Mathematical transform of traveling-wave equations and phase aspects of quantum interaction,” Mathematical Problems in Engineering, vol. 2010, Article ID 695208, 15 pages, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  21. M. Li, “Generation of teletraffic of generalized Cauchy type,” Physica Scripta, vol. 81, no. 2, Article ID 025007, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Li and W. Zhao, “Representation of a Stochastic Traffic Bound,” IEEE Transactions on Parallel and Distributed Systems, vol. 21, no. 9, pp. 1368–1372, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Alvarez and S. Li, “Some basic cryptographic requirements for chaos-based cryptosystems,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 16, no. 8, pp. 2129–2151, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  24. M. T. Rosenstein, J. J. Collins, and C. J. De Luca, “A practical method for calculating largest Lyapunov exponents from small data sets,” Physica D, vol. 65, no. 1-2, pp. 117–134, 1993. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  25. N. K. Pareek, Vinod Patidar, and K. K. Sud, “Cryptography using multiple one-dimensional chaotic maps,” Communications in Nonlinear Science and Numerical Simulation, vol. 10, no. 7, pp. 715–723, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  26. T. Addabbo, M. Alioto, A. Fort, A. Pasini, S. Rocchi, and V. Vignoli, “A class of maximum-period nonlinear congruential generators derived from the Rényi chaotic map,” IEEE Transactions on Circuits and Systems. I, vol. 54, no. 4, pp. 816–828, 2007. View at Publisher · View at Google Scholar
  27. C. M. Ou, “Design of block ciphers by simple chaotic functions,” IEEE Computational Intelligence Magazine, vol. 3, no. 2, Article ID 4490261, pp. 54–59, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus.
  29. A. Rukhin, et al., “A statistical test suite for the validation of random number generators and pseudo random number generators for cryptographic applications,” National Institute of Standards and Technology (NIST), Gaithersburg, Md, USA, NIST Special Publication 800-22, April 2010, http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html.