About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 140301, 23 pages
http://dx.doi.org/10.1155/2012/140301
Research Article

Error Modeling and Analysis for InSAR Spatial Baseline Determination of Satellite Formation Flying

Department of Mathematics and Systems Science, College of Science, National University of Defense Technology, Changsha 410073, China

Received 30 September 2011; Revised 9 December 2011; Accepted 12 December 2011

Academic Editor: Silvia Maria Giuliatti Winter

Copyright © 2012 Jia Tu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Krieger, I. Hajnsek, K. P. Papathanassiou, M. Younis, and A. Moreira, “Interferometric synthetic aperture radar (SAR) missions employing formation flying,” Proceedings of the IEEE, vol. 98, no. 5, pp. 816–843, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. M. L. Jiao, “A review on latest Interferometric Synthetic Aperture Radar researches,” in WRI World Congress on Software Engineering (WCSE '09), pp. 387–390, May 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. W. Wang, “Optimal baseline design and error compensation for bistatic spaceborne InSAR,” in Proceedings of Fringe Workshop, November-December 2005.
  4. G. Krieger, A. Moreira, H. Fiedler et al., “TanDEM-X: a satellite formation for high-resolution SAR interferometry,” IEEE Transactions on Geoscience and Remote Sensing, vol. 45, no. 11, pp. 3317–3340, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Zink, H. Fiedler, I. Hajnsek, G. Krieger, A. Moreira, and M. Werner, “The TanDEM-X mission concept,” in IEEE International Geoscience and Remote Sensing Symposium (IGARSS '06), pp. 1938–1941, August 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Werninghaus and S. Buckreuss, “The TerraSAR-X mission and system design,” IEEE Transactions on Geoscience and Remote Sensing, vol. 48, no. 2, pp. 606–614, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Wermuth, O. Montenbruck, and A. Wendleder, “Relative navigation for the TanDEM-X mission and evaluation with DEM calibration results,” in the 22nd International Symposium on Space Flight Dynamics, Sao Jose dos Campos, Brazil, 2011.
  8. H. Xu, Y. Zhou, and C. Li, “Analysis and simulation of spaceborne SAR interferometric baseline,” in Proceedings of the CIE International Conference on Radar, pp. 639–643, Beijing, China, October 2001. View at Scopus
  9. R. Kroes, O. Montenbruck, W. Bertiger, and P. Visser, “Precise GRACE baseline determination using GPS,” GPS Solutions, vol. 9, no. 1, pp. 21–31, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. O. Montenbruck, P. W. L. van Barneveld, Y. Yoon, and P. N. A. M. Visser, “GPS-based precision baseline reconstruction for the TanDEM-X SAR-formation,” in the 20th International Symposium on Space Flight Dynamics, pp. 24–28, 2007.
  11. S. D’Amico and O. Montenbruck, “Differential GPS: an enabling technology for formation flying satellites,” in the 7th IAA Symposium on Small Satellites for Earth Observation, pp. 457–464, 2009.
  12. O. Montenbruck and E. Gill, Satellite Orbits: Models, Methods and Applications, Springer, Heidelberg, Germany, 2000.
  13. P. W. Binning, Absolute and relative satellite to satellite navigation using GPS, Ph.D. dissertation, University of Colorado, 1997.
  14. P. J. G. Teunissen, “The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation,” Journal of Geodesy, vol. 70, no. 1-2, pp. 65–82, 1995. View at Publisher · View at Google Scholar · View at Scopus
  15. P. J. G. Teunissen, P. J. De Jonge, and C. C. J. M. Tiberius, “The least-squares ambiguity decorrelation adjustment: its performance on short GPS baselines and short observation spans,” Journal of Geodesy, vol. 71, no. 10, pp. 589–602, 1997. View at Scopus
  16. J. Kouba, A guide using International GPS Service (IGS) products, Jet Propulsion Laboratory, Pasadena, Calif, USA, 2009.
  17. R. Kroes, Precise relative positioning of formation flying spacecraft using GPS, Ph.D. dissertation, Delft University of Technology, The Netherlands, 2006.
  18. O. Montenbruck, M. Garcia-Fernandez, Y. Yoon, S. Schön, and A. Jäggi, “Antenna phase center calibration for precise positioning of LEO satellites,” GPS Solutions, vol. 13, no. 1, pp. 23–34, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Jäggi, R. Dach, O. Montenbruck, U. Hugentobler, H. Bock, and G. Beutler, “Phase center modeling for LEO GPS receiver antennas and its impact on precise orbit determination,” Journal of Geodesy, vol. 83, no. 12, pp. 1145–1162, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Garcia and O. Montenbruck, “TerraSAR-X/TanDEM-X GPS antenna phase center analysis and results,” German Space Operations Center, Germany, 2007.
  21. J. H. Gonzalez, M. Bachmann, G. Krieger, and H. Fiedler, “Development of the TanDEM-X calibration concept: analysis of systematic errors,” IEEE Transactions on Geoscience and Remote Sensing, vol. 48, no. 2, pp. 716–726, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. D. D. McCarthy, “IERS conventions,” IERS Technical Note 21, Observatoire de Paris, Paris, France, pp. 20–39, 1996.
  23. W. T. Wang and Y. H. Qi, “A new technique to compensate for error in SAR antenna power pattern,” Chinese Space Science and Technology, vol. 17, no. 3, pp. 65–70, 1997.
  24. D. F. Gu, The spatial states measurement and estimation of distributed InSAR satellite system, Ph.D. dissertation, National University of Defense Technology, China, 2009.
  25. O. Montenbruck, T. Van Helleputte, R. Kroes, and E. Gill, “Reduced dynamic orbit determination using GPS code and carrier measurements,” Aerospace Science and Technology, vol. 9, no. 3, pp. 261–271, 2005. View at Publisher · View at Google Scholar · View at Scopus