About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 241690, 10 pages
http://dx.doi.org/10.1155/2012/241690
Research Article

A New Hybrid Method Logistic Regression and Feedforward Neural Network for Lung Cancer Data

Department of Statistics, Faculty of Science and Lecture, Ondokuz Mayis University, 55139 Samsun, Turkey

Received 24 July 2012; Revised 3 October 2012; Accepted 6 November 2012

Academic Editor: Marek Lefik

Copyright © 2012 Taner Tunç. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Dreiseitl and L. Ohno-Machado, “Logistic regression and artificial neural network classification models: a methodology review,” Journal of Biomedical Informatics, vol. 35, no. 5-6, pp. 352–359, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Paliwal and U. A. Kumar, “Neural networks and statistical techniques: a review of applications,” Expert Systems with Applications, vol. 36, no. 1, pp. 2–17, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. I. Kurt, M. Ture, and A. T. Kurum, “Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease,” Expert Systems with Applications, vol. 34, no. 1, pp. 366–374, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Oner, T. Tunc, E. Egrioglu, and Y. Atasoy, “Comparisons of logistic regression and artificial neural networks in lung cancer data,” submitted to Scientific Research and Essays.
  5. C. L. Chang and M. Y. Hsu, “The study that applies artificial intelligence and logistic regression for assistance in differential diagnostic of pancreatic cancer,” Expert Systems with Applications, vol. 36, no. 7, pp. 10663–10672, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. M.-H. Chen and D. K. Dey, “Variable selection for multivariate logistic regression models,” Journal of Statistical Planning and Inference, vol. 111, no. 1-2, pp. 37–55, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  7. D. Ghosh and Z. Yuan, “An improved model averaging scheme for logistic regression,” Journal of Multivariate Analysis, vol. 100, no. 8, pp. 1670–1681, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  8. A. Stacey and D. Kildea, “Genetic Algorithm search for Large Logistic Regression models with significant variables,” in Proceedings of the 22nd International Conference Information Technology Interfaces (ITI '00), Pula, Croatia, June 2000.
  9. J. Pacheco, S. Casado, and L. Núñez, “A variable selection method based on Tabu search for logistic regression models,” European Journal of Operational Research, vol. 199, no. 2, pp. 506–511, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH