About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 241916, 19 pages
http://dx.doi.org/10.1155/2012/241916
Research Article

Complex Formation Control of Large-Scale Intelligent Autonomous Vehicles

Department of Control Engineering, Naval Aeronautical and Astronautical University, Yantai 264001, China

Received 21 August 2012; Revised 13 October 2012; Accepted 17 October 2012

Academic Editor: Jun-Juh Yan

Copyright © 2012 Ming Lei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Balch and R. C. Arkin, “Behavior-based formation control for multirobot teams,” IEEE Transactions on Robotics and Automation, vol. 14, no. 6, pp. 926–939, 1998. View at Scopus
  2. Y. Fan, L. Shirong, and D. Deguo, “Robot behavior and service-based motion behavior structure design in formation control,” Robot, vol. 34, no. 1, pp. 120–128, 2012.
  3. R. M. Kuppan Chetty, M. Singaperumal, and T. Nagarajan, “Behavior based multi robot formations with active obstacle avoidance based on switching control strategy,” Advanced Materials Research, vol. 433–440, pp. 6630–6635, 2012.
  4. N. E. Leonard and E. Fiorelli, “Virtual leaders, artificial potentials and coordinated control of groups,” in Proceedings of the 40th IEEE Conference on Decision and Control (CDC '01), pp. 2968–2973, December 2001. View at Scopus
  5. K. H. Kowdiki, R. K. Barai, and S. Bhattacharya, “Leader-follower formation control using artificial potential functions: a kinematic approach,” in Proceedings of the ICAESM, pp. 500–505, 2012.
  6. A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile autonomous agents using nearest neighbor rules,” IEEE Transactions on Automatic Control, vol. 48, no. 6, pp. 988–1001, 2003. View at Publisher · View at Google Scholar
  7. M. A. Lewis and K. H. Tan, “High precision formation control of mobile robots using virtual structures autonomous,” Autonomous Robots, vol. 4, no. 4, pp. 387–403, 1997. View at Scopus
  8. H. Mehrjerdi, J. Ghommam, and M. Saad, “Nonlinear coordination control for a group of mobile robots using a virtual structure,” Mechatronics, vol. 21, no. 7, pp. 1147–1155, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. W. Ren and R. W. Beard, “Decentralized scheme for spacecraft formation flying via the virtual structure approach,” Journal of Guidance, Control, and Dynamics, vol. 27, no. 1, pp. 73–82, 2004. View at Scopus
  10. J. Hammer, G. Piper, O. Thorp, and J. Watkins, “Investigating virtual structure based control strategies for spacecraft formation maneuvers,” in Proceedings of the AIAA Guidance, Navigation, and Control Conference, pp. 925–930, August 2004. View at Scopus
  11. J. J. Arrieta-Camacho, L. T. Biegler, and D. Subramanian, “Trajectory control of multiple aircraft: an NMPC approach,” in Proceedings of the Assessment and Future Directions, vol. 358 of Lecture Notes in Control and Information Sciences, pp. 629–639, 2007.
  12. E.-K. Poh, J.-L. Wang, and K.-V. Ling, “Near optimal tracking solution for input constrained UAV using MPC,” in Proceedings of the AIAA Guidance, Navigation, and Control Conference, Toronto, Ontario, Canada, 2010.
  13. S. Ueno and S. J. Kwon, “Optimal reconfiguration of UAVs in formation flight,” in Proceedings of the SICE Annual Conference (SICE '07), pp. 2611–2614, Kagawa University, Japan, September 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. Z. Xiang-Yin and D. Hai-Bin, “Differential evolution-based receding horizon control design for multi-UVAs formation reconfiguration,” Transactions of the Institute of Measurement and Control, vol. 34, no. 2-3, pp. 165–183, 2012.
  15. R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with switching topology and time-delays,” IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1520–1533, 2004. View at Publisher · View at Google Scholar
  16. P. Lin and Y. Jia, “Consensus of a class of second-order multi-agent systems with time-delay and jointly-connected topologies,” IEEE Transactions on Automatic Control, vol. 55, no. 3, pp. 778–784, 2010. View at Publisher · View at Google Scholar
  17. W. Ren, R. W. Beard, and E. M. Atkins, “Information consensus in multivehicle cooperative control,” IEEE Control Systems Magazine, vol. 27, no. 2, pp. 71–82, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. W. Ren, “Multi-vehicle consensus with a time-varying reference state,” Systems & Control Letters, vol. 56, no. 7-8, pp. 474–483, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  19. Y. Hong, J. Hu, and L. Gao, “Tracking control for multi-agent consensus with an active leader and variable topology,” Automatica, vol. 42, no. 7, pp. 1177–1182, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  20. R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation in networked multi-agent systems,” Proceedings of the IEEE, vol. 95, no. 1, pp. 215–233, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. F. Xiao, L. Wang, J. Chen, and Y. Gao, “Finite-time formation control for multi-agent systems,” Automatica, vol. 45, no. 11, pp. 2605–2611, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  22. C. W. Reynolds, “Hocks, herds, and schools: A distributed behavioral model,” Computer Graphics, vol. 21, no. 4, pp. 25–34, 1987. View at Scopus
  23. R. Olfati-Saber, “Flocking for multi-agent dynamic systems: algorithms and theory,” IEEE Transactions on Automatic Control, vol. 51, no. 3, pp. 401–420, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Yang, Q. Lu, and X. Lang, “Flocking shape analysis of multi-agent systems,” Science China Technological Sciences, vol. 53, no. 3, pp. 741–747, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Lu, Y. Guo, and Z. Dong, “Multiagent flocking with formation in a constrained environment,” Journal of Control Theory and Applications, vol. 8, no. 2, pp. 151–159, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. W. Ren, “Consensus based formation control strategies for multi-vehicle systems,” in Proceedings of the American Control Conference, pp. 4237–4242, June 2006. View at Scopus
  27. E. W. Justh and P. S. Krishnaprasad, “Equilibria and steering laws for planar formations,” Systems and Control Letters, vol. 52, no. 1, pp. 25–38, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. J. A. Fax and R. M. Murray, “Information flow and cooperative control of vehicle formations,” IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1465–1476, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. Z. Lin, B. Francis, and M. Maggiore, “Necessary and sufficient graphical conditions for formation control of unicycles,” IEEE Transactions on Automatic Control, vol. 50, no. 1, pp. 121–127, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. W. Yang, A. L. Bertozzi, and X. Wang, “Stability of a second order consensus algorithm with time delay,” in Proceedings of the 47th IEEE Conference on Decision and Control (CDC '08), pp. 2926–2931, Cancun, Mexico, December 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Jiangping and H. Yiguang, “Leader-following coordination of multi-agent systems with coupling time delays,” Physica A, vol. 374, no. 2, pp. 853–863, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. M. de la Sen, “On some structures of stabilizing control laws for linear and time-varying systems with bounded point delays and unmeasurable,” International Journal of Control, vol. 59, no. 2, pp. 529–541, 1994.
  33. A. Ibeas and M. de la Sen, “Robustly stable adaptive control of a tandem of master-slave robotic manipulators with force reflection by using a multiestimation scheme,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 36, no. 5, pp. 1162–1179, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. M. de la Sen and A. Ibeas, “On the global asymptotic stability of switched linear time-varying systems with constant point delays,” Discrete Dynamics in Nature and Society, vol. 2008, Article ID 231710, 31 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. G. Lafferriere, A. Williams, J. Caughman, and J. J. P. Veerman, “Decentralized control of vehicle formations,” Systems and Control Letters, vol. 54, no. 9, pp. 899–910, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. L. Bakule and M. Papík, “Decentralized control and communication,” Annual Reviews in Control, vol. 36, no. 1, pp. 1–10, 2012.