About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 242043, 14 pages
http://dx.doi.org/10.1155/2012/242043
Research Article

A Multiplicative Noise Removal Approach Based on Partial Differential Equation Model

College of Mathematics and Computational Science, Shenzhen University, Shenzhen 518060, China

Received 26 February 2012; Accepted 23 March 2012

Academic Editor: Ming Li

Copyright © 2012 Bo Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Q. Y. Ruan and Y. Z. Ruan, Digital Image Processing, Publishing House of Electronics Industry, Beijing, China, 2nd edition, 2004.
  2. Q. H. Chang and T. Yang, “A lattice Boltzmann method for image denoising,” IEEE Transactions on Image Processing, vol. 18, no. 12, pp. 2797–2802, 2009. View at Publisher · View at Google Scholar
  3. C. Chaux, L. Duval, A. Benazza-Benyahia, and J.-C. Pesquet, “A nonlinear Stein-based estimator for multichannel image denoising,” IEEE Transactions on Signal Processing, vol. 56, no. 8, part 2, pp. 3855–3870, 2008. View at Publisher · View at Google Scholar
  4. P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 7, pp. 629–639, 1990.
  5. S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations,” Journal of Computational Physics, vol. 79, no. 1, pp. 12–49, 1988. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  6. S. Osher and C. W. Shu, “High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations,” SIAM Journal on Numerical Analysis, vol. 28, no. 4, pp. 907–922, 1991. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  7. B. Chen, Y. Li, and J.-L. Cai, “Noisy image segmentation based on nonlinear diffusion equation model,” Applied Mathematical Modelling, vol. 36, no. 3, pp. 1197–1208, 2012.
  8. Z. Liao, S. Hu, and W. Chen, “Determining neighborhoods of image pixels automatically for adaptive image denoising using nonlinear time series analysis,” Mathematical Problems in Engineering, vol. 2010, Article ID 914564, 14 pages, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  9. S. Hu, Z. Liao, D. Sun, and W. Chen, “A numerical method for preserving curve edges in nonlinear anisotropic smoothing,” Mathematical Problems in Engineering, vol. 2011, Article ID 186507, 14 pages, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  10. M. Li, “Fractal time series—a tutorial review,” Mathematical Problems in Engineering, vol. 2010, Article ID 157264, 26 pages, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  11. Z. Shang, L. Zhang, S. Ma, B. Fang, and T. Zhang, “Incomplete time series prediction using max-margin classification of data with absent features,” Mathematical Problems in Engineering, vol. 2010, 14 pages, 2010.
  12. M. Freiberger, H. Egger, and H. Scharfetter, “Nonlinear inversion schemes for fluorescence optical tomography,” IEEE Transactions on Biomedical Engineering, vol. 57, no. 11, pp. 2723–2729, 2010.
  13. Z. Liao, S. Hu, D. Sun, and W. Chen, “Enclosed Laplacian operator of nonlinear anisotropic diffusion to preserve singularities and delete isolated points in image smoothing,” Mathematical Problems in Engineering, vol. 2011, Article ID 749456, 15 pages, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  14. M. Li and W. Zhao, “Visiting power laws in cyber-physical networking systems,” Mathematical Problems in Engineering, vol. 2012, Article ID 302786, 13 pages, 2012. View at Publisher · View at Google Scholar
  15. M. Li, C. Cattani, and S. Chen, “Viewing sea level by a one-dimensional random function with long memory,” Mathematical Problems in Engineering, vol. 2011, Article ID 654284, 13 pages, 2011. View at Publisher · View at Google Scholar
  16. F. Zhang, Y. M. Yoo, L. M. Koh, and Y. Kim, “Nonlinear diffusion in laplacian pyramid domain for ultrasonic speckle reduction,” IEEE Transactions on Medical Imaging, vol. 26, no. 2, pp. 200–211, 2007.
  17. M. Ceccarelli, V. De Simone, and A. Murli, “Well-posed anisotropic diffusion for image denoising,” IEE Proceedings: Vision, Image and Signal Processing, vol. 149, no. 4, pp. 244–252, 2002.
  18. M. Li, M. Scalia, and C. Toma, “Nonlinear time series: computations and applications,” Mathematical Problems in Engineering, vol. 2010, Article ID 101523, 5 pages, 2010.
  19. L. X. Shen, M. Papadakis, I. A. Kakadiaris, et al., “Image denoising using a tight frame,” IEEE Transaction on Image Processing, vol. 15, no. 5, pp. 1254–1263, 2006.
  20. B. Chen and W.-S. Chen, “Noisy image segmentation based on wavelet transform and active contour model,” Applicable Analysis, vol. 90, no. 8, pp. 1243–1255, 2011. View at Publisher · View at Google Scholar
  21. T. Celik and K. Ma, “multitemporal image change detection using undecimated discrete wavelet transform and active contours,” IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 2, pp. 706–716, 2011.
  22. T. Celik and K. Ma, “Unsupervised change detection for satellite images using dual-tree complex wavelet transform,” IEEE Transactions on Geoscience and Remote Sensing, vol. 48, no. 3, pp. 1199–1210, 2010.
  23. S. Kim, “PDE-based image restoration: a hybrid model and color image denoising,” IEEE Transaction on Image Processing, vol. 15, no. 5, pp. 1163–1170, 2006.
  24. Y.-L. You and M. Kaveh, “Fourth-order partial differential equations for noise removal,” IEEE Transactions on Image Processing, vol. 9, no. 10, pp. 1723–1730, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  25. B. Chen, W.-S. Chen, L.-W. Zhang, et al., “Image restoration based on fourth-order PDE model,” in Proceedings of the IEEE International Conference on Natural Computation, vol. 5, pp. 549–554, Jinan, China, 2008.
  26. B. Chen, P.-C. Yuen, J.-H. Lai, and W.-S. Chen, “Image segmentation and selective smoothing based on variational framework,” Journal of Signal Processing Systems, vol. 54, pp. 145–158, 2009.
  27. L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removel algorithms,” Physica D, vol. 60, pp. 259–268, 1992.
  28. S. D. Babacan, R. Molina, and A. Katsaggelos, “Variational bayesian blind deconvolution using a total variation prior,” IEEE Transactions on Image Processing, vol. 18, no. 1, pp. 12–26, 2009.
  29. L. Rudin and S. Osher, “Total variation based image restoration with free local constraints,” in Proceedings of the 1st IEEE International Conference on Image Processing, vol. 1, pp. 31–35, 1994.
  30. T. F. Chan, S. Osher, and J. H. Shen, “The digital TV filter and Nonlinear Denoising,” IEEE Transaction on Image Processing, vol. 10, no. 2, pp. 231–241, 2001.
  31. A. Beck and M. Teboulle, “Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems,” IEEE Transactions on Image Processing, vol. 18, no. 11, pp. 2419–2434, 2009. View at Publisher · View at Google Scholar
  32. C. Drapaca, “A nonlinear total variation-based denoising method with two regularization parameters,” IEEE Transactions on Biomedical Engineering, vol. 56, no. 3, pp. 582–586, 2009.
  33. M. Kumar and S. Dass, “A total variation-based algorithm for pixel-level image fusion,” IEEE Transactions on Image Processing, vol. 18, no. 9, pp. 2137–2143, 2009. View at Publisher · View at Google Scholar
  34. P. Rodríguez and B. Wohlberg, “Efficient minimization method for a generalized total variation functional,” IEEE Transactions on Image Processing, vol. 18, no. 2, pp. 322–332, 2009. View at Publisher · View at Google Scholar
  35. T. Zeng and M. Ng, “On the total variation dictionary model,” IEEE Transactions on Image Processing, vol. 19, no. 3, pp. 821–825, 2010. View at Publisher · View at Google Scholar
  36. B. C. Vemuri, M. Liu, S. Amari, et al., “Total bregman divergence and its applications to DTI analysis,” IEEE Transactions on Medical Imaging, vol. 30, no. 2, pp. 475–483, 2011.
  37. S. Ramani, P. Thevenaz, and M. Unser, “Regularized interpolation for noisy images,” IEEE Transactions on Medical Imaging, vol. 29, no. 2, pp. 543–558, 2010.
  38. J. Yao, J. Chen, and C. Chow, “Breast tumor analysis in dynamic contrast enhanced MRI using texture features and wavelet transform,” IEEE Journal of Selected Topics in Signal Processing, vol. 3, no. 1, pp. 94–100, 2009.
  39. M. Zibetti and A. R. De Pierro, “A new distortion model for strong inhomogeneity problems in Echo-Planar MRI,” IEEE Transactions on Medical Imaging, vol. 28, no. 11, pp. 1736–1753, 2009.
  40. J. M. Bioucas-Dias and M. A. T. Figueiredo, “Multiplicative noise removal using variable splitting and constrained optimization,” IEEE Transactions on Image Processing, vol. 19, no. 7, pp. 1720–1730, 2010. View at Publisher · View at Google Scholar
  41. L. Rudin, P. Lions, and S. Osher, “Multiplicative denoising and deblurring: theory and algorithms,” in Geometric Level Set Methods in Imaging, Vision, and Graphics, S. Osher and N. Paragios, Eds., pp. 103–120, Springer, New York, NY, USA, 2003.
  42. J. Goodman, “Some fundamental properties of speckle,” Journal of the Optical Society of America, vol. 66, pp. 1145–1150, 1976.
  43. Y. Yu and S. T. Acton, “Speckle reducing anisotropic diffusion,” IEEE Transactions on Image Processing, vol. 11, no. 11, pp. 1260–1270, 2002. View at Publisher · View at Google Scholar
  44. K. Krissian, C.-F. Westin, R. Kikinis, and K. G. Vosburgh, “Oriented speckle reducing anisotropic diffusion,” IEEE Transactions on Image Processing, vol. 16, no. 5, pp. 1412–1424, 2007. View at Publisher · View at Google Scholar