About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 271831, 14 pages
http://dx.doi.org/10.1155/2012/271831
Research Article

A Parallel Adaptive Particle Swarm Optimization Algorithm for Economic/Environmental Power Dispatch

1School of Economic and Management, North China Electric Power University, Beijing 102206, China
2Department of Economic and Management, North China Electric Power University, Baoding 071000, China

Received 15 August 2012; Revised 15 November 2012; Accepted 20 November 2012

Academic Editor: Jung-Fa Tsai

Copyright © 2012 Jinchao Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Petrovic and B. Kralj, “Economic and environmental power dispatch,” European Journal of Operational Research, vol. 64, no. 1, pp. 2–11, 1993. View at Scopus
  2. J. H. Talaq, F. El-Hawary, and M. E. El-Hawary, “Summary of environmental/economic dispatch algorithms,” IEEE Transactions on Power Systems, vol. 9, no. 3, pp. 1508–1516, 1994. View at Publisher · View at Google Scholar · View at Scopus
  3. G. P. Granelli, M. Montagna, G. L. Pasini, and P. Marannino, “Emission constrained dynamic dispatch,” Electric Power Systems Research, vol. 24, no. 1, pp. 55–64, 1992. View at Scopus
  4. A. J. Mezger and K. C. de Almeida, “Short term hydrothermal scheduling with bilateral transactions via bundle method,” International Journal of Electrical Power and Energy Systems, vol. 29, no. 5, pp. 387–396, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. S. J. P. S. Mariano, J. P. S. Catalão, V. M. F. Mendes, and L. A. F. M. Ferreira, “Profit-based short-term hydro scheduling considering head-dependent power generation,” in Proceedings of the IEEE Power Tech Conference, pp. 1362–1367, July 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. L. J. Martinez, T. A. Lora, and R. J. Santos, “Short term hydrothermal coordination based on interior point nonlinear programming and genetic Algorithm,” in Proceedings of the IEEE Porto Power Tech Conference, 2001.
  7. C. W. Gar, M. Aganagic, J. G. Waight et al., “Experiences with mixed integer linear programming based approaches on short-term hydro scheduling,” IEEE Transactions on Power Systems, vol. 16, no. 4, pp. 743–749, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. G. W. Chang, M. Aganagic, J. G. Waight et al., “Experiences with mixed integer linear programming based approaches on short-term hydro scheduling,” IEEE Transactions on Power Systems, vol. 16, no. 4, pp. 743–749, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Garcia-Gonzalez and G. Alonso Castro, “Short term hydro scheduling with cascaded and head dependent reservoir based on mixed integer linear programming,” in Proceedings of the IEEE Porto Power Tech Conference, vol. 3, pp. 758–765, 2001.
  10. J. García-González and G. Alonso Castro, “Profit based optimal scheduling of a hydro chain in the day ahead electricity market,” European Journal of Operational Research, vol. 18, no. 1, pp. 1354–1369, 2007.
  11. C. C. Shi, H. C. Chun, I. K. Fomg, and P. B. Lah, “Hydroelectric generation scheduling with an effective differential dynamic programming algorithm,” IEEE Transactions on Power System, vol. 5, no. 3, pp. 737–743, 1990.
  12. C. Erion Finardi, L. D. Silva Edson, and C. V. Laudia Sagastizabal, “Solving the unit commitment problem of hydropower plants via Lagrangian relaxation and sequential quadratic programming,” Computational & Applied Mathematics, vol. 24, no. 3, pp. 23–35, 2005.
  13. S. Tkayuki and W. Kamu, “Lagrangian relaxation method for price based unit commitment problem,” Engineering Optimization Taylor Francis, vol. 36, no. 6, pp. 705–719, 2004.
  14. P. E. C. Franco, M. F. Carvalho, and S. Soares, “Network flow model for short-term hydro-dominated hydrothermal scheduling problems,” IEEE Transactions on Power Systems, vol. 9, no. 2, pp. 1016–1022, 1994. View at Publisher · View at Google Scholar · View at Scopus
  15. A. J. Wood and B. F. Wollenberg, Power Generation Operation and Control, John Wiley & Sons, New York, NY, USA, 1984.
  16. J. S. Dhillon, S. C. Parti, and D. P. Kothari, “Stochastic economic emission load dispatch,” Electric Power Systems Research, vol. 26, no. 3, pp. 179–186, 1993. View at Scopus
  17. C. S. Chang, K. P. Wong, and B. Fan, “Security-constrained multi-objective generation dispatch using bicriterion global optimization,” IEE Proceedings of Generation, Transmission and Distribution, vol. 142, no. 4, pp. 406–414, 1995.
  18. A. I. S. Kumar, K. Dhanushkodi, J. J. Kumar, and C. K. C. Paul, “Particle swarm optimization solution to emission and economic dispatch problem,” in Proceedings of the IEEE Region 10th International Conference, pp. 748–759, 2001.
  19. H. H. Chang, “Genetic algorithms and non-intrusive energy management system based economic dispatch for cogeneration units,” Energy, vol. 36, no. 1, pp. 181–190, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. D. N. Jeyakumar, T. Jayabarathi, and T. Raghunathan, “Particle swarm optimization for various types of economic dispatch problems,” International Journal of Electrical Power and Energy Systems, vol. 28, no. 1, pp. 36–42, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Sivasubramani and K. S. Swarup, “Environmental/economic power dispatch problem using multi-objective differential evolution algorithm,” Electric Power Systems Research, vol. 88, pp. 1171–1181, 2010.
  22. M. Kop and X. Liu, “Texture detection by genetic programming,” in Proceedings of the Congress on Evolutionary Computation, pp. 867–872, May 2001. View at Scopus
  23. T. Qiaoling, Z. Xuecheng, Z. Qiao, G. Fei, and H. Tong, “The hardware/software partitioning in embedded system by improved particle swarm optimization algorithm,” in Proceedings of the 5th IEEE International Symposium on Embedded Computing (SEC '08), pp. 43–46, October 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. S. W. Leung, S. Y. Yuen, and C. K. Chow, “Parameter control system of evolutionary algorithm that is aided by the entire search history,” Applied Soft Computing, vol. 12, no. 9, pp. 3063–3078, 2012.
  25. M. A. Abido, “A novel multiobjective evolutionary algorithm for environmental/economic power dispatch,” Electric Power Systems Research, vol. 65, no. 1, pp. 71–81, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. D. W. Gong, Y. Zhang, and C. L. Qi, “Environmental/economic power dispatch using a hybrid multi-objective optimization algorithm,” International Journal of Electrical Power and Energy Systems, vol. 32, no. 6, pp. 607–614, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Wang and C. Singh, “Reserve-constrained multiarea environmental/economic dispatch based on particle swarm optimization with local search,” Engineering Applications of Artificial Intelligence, vol. 22, no. 2, pp. 298–307, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Saadat, Power System Analysis, The McGraw-Hill Companies, New York, NY, USA, 1999.
  29. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948, December 1995. View at Scopus
  30. A. Farag, S. Al-Baiyat, and T. C. Cheng, “Economic load dispatch multiobjective optimization procedures using linear programming techniques,” IEEE Transactions on Power Systems, vol. 10, no. 2, pp. 731–738, 1995. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Balakrishnana, P. S. Kannanb, C. Aravindanc, and P. Subathra, “On-line emission and economic load dispatch using adaptive Hopfield neural network,” Applied Soft Computing, vol. 2, pp. 297–305, 2003.