About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 273631, 21 pages
http://dx.doi.org/10.1155/2012/273631
Research Article

Improved Polynomial Fuzzy Modeling and Controller with Stability Analysis for Nonlinear Dynamical Systems

1Faculty of Electrical and Computer Engineering, University of Tabriz, P.O. Box 5166616471, Tabriz, Iran
2Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada T6G 2V4

Received 25 May 2012; Revised 30 September 2012; Accepted 4 October 2012

Academic Editor: Mohammed Chadli

Copyright © 2012 Hamed Kharrati et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Feng, “A survey on analysis and design of model-based fuzzy control systems,” IEEE Transactions on Fuzzy Systems, vol. 14, no. 5, pp. 676–697, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Guelton, T. M. Guerra, M. Bernal, T. Bouarar, and N. Manamanni, “Comments on fuzzy control systems design via fuzzy lyapunov functions,” IEEE Transactions on Systems, Man, and Cybernetics Part B, vol. 40, no. 3, pp. 970–972, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. T. H. S. Li and S. H. Tsai, “T-S fuzzy bilinear model and fuzzy controller design for a class of nonlinear systems,” IEEE Transactions on Fuzzy Systems, vol. 15, no. 3, pp. 494–506, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Transactions on Systems, Man and Cybernetics, vol. 15, no. 1, pp. 116–132, 1985. View at Scopus
  5. C. W. Tao, Y. H. Chang, C. W. Chang, W. S. Chan, and J. S. Taur, “Robust and stable hybrid fuzzy control of a pendulum-cart system with particle swarm optimization,” International Journal of Fuzzy Systems, vol. 12, no. 1, pp. 48–58, 2010. View at Scopus
  6. J. S. Chiou and S. H. Tsai, “Stability and stabilization of Takagi-Sugeno fuzzy switched system with time-delay,” Journal of Systems and Control Engineering, vol. 226, no. 5, pp. 615–621, 2012.
  7. M. Sugeno and G. T. Kang, “Structure identification of fuzzy model,” Fuzzy Sets and Systems, vol. 28, no. 1, pp. 15–33, 1988. View at Scopus
  8. G. Feng, “A survey on analysis and design of model-based fuzzy control systems,” IEEE Transactions on Fuzzy Systems, vol. 14, no. 5, pp. 676–697, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Adamy and A. Schwung, “Qualitative modeling of dynamical systems employing continuous-time recurrent fuzzy systems,” Fuzzy Sets and Systems, vol. 161, no. 23, pp. 3026–3043, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Tanaka and H. O. Wang, Fuzzy Control Systems Design and Analysis, John Wiley & Sons, 2001.
  11. J. L. Castro, “Fuzzy logic controllers are universal approximators,” IEEE Transactions on Systems, Man and Cybernetics, vol. 25, no. 4, pp. 629–635, 1995. View at Publisher · View at Google Scholar · View at Scopus
  12. H. K. Lam, “Polynomial fuzzy-model-based control systems: stability analysis via piecewise-linear membership functions,” IEEE Transactions on Fuzzy Systems, vol. 19, no. 3, pp. 588–593, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Sala and C. Ariño, “Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: applications of Polya's theorem,” Fuzzy Sets and Systems, vol. 158, no. 24, pp. 2671–2686, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. H. K. Lam and M. Narimani, “Quadratic-stability analysis of fuzzy-model-based control systems using staircase membership functions,” IEEE Transactions on Fuzzy Systems, vol. 18, no. 1, pp. 125–137, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. W. J. Chang, C. H. Chang, and C. C. Ku, “Fuzzy controller design for Takagi-Sugeno fuzzy models with multiplicative noises via relaxed non-quadratic stability analysis,” Proceedings of the IME Part I: Journal of Systems and Control Engineering, vol. 224, no. 8, pp. 918–931, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. D. H. Lee, J. B. Park, and Y. H. Joo, “A new fuzzy lyapunov function for relaxed stability condition of continuous-time Takagi-Sugeno fuzzy systems,” IEEE Transactions on Fuzzy Systems, vol. 19, no. 4, pp. 785–791, 2011.
  17. H. K. Lam and F. H. Leung, Stability Analysis of Fuzzy-Model-Based Control Systems, Springer, Berlin, Germany, 2011.
  18. H. Zhang and X. Xie, “Relaxed stability conditions for continuous-time TS fuzzy-control systems via augmented multi-indexed matrix approach,” IEEE Transactions on Fuzzy Systems, vol. 19, no. 3, pp. 478–492, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. L. A. Mozelli, R. M. Palhares, and G. S. C. Avellar, “A systematic approach to improve multiple Lyapunov function stability and stabilization conditions for fuzzy systems,” Information Sciences, vol. 179, no. 8, pp. 1149–1162, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. H. K. Lam, “LMI-based stability analysis for fuzzy-model-based control systems using artificial TS fuzzy model,” IEEE Transactions on Fuzzy Systems, vol. 19, no. 3, pp. 505–513, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Dong and G. H. Yang, “Control synthesis of T-S fuzzy systems based on a new control scheme,” IEEE Transactions on Fuzzy Systems, vol. 19, no. 2, pp. 323–338, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Tanaka and M. Sugeno, “Stability analysis and design of fuzzy control systems,” Fuzzy Sets and Systems, vol. 45, no. 2, pp. 135–156, 1992. View at Scopus
  23. C. L. Chen, P. C. Chen, and C. K. Chen, “Analysis and design of fuzzy control system,” Fuzzy Sets and Systems, vol. 57, no. 2, pp. 125–140, 1993. View at Scopus
  24. X. Huang, J. Cao, and Y. Li, “Takagi-Sugeno fuzzy-model-based control of hyperchaotic Chen system with norm-bounded uncertainties,” Proceedings of the IME Part I: Journal of Systems and Control Engineering, vol. 224, no. 3, pp. 223–234, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. H. K. Lam and M. Narimani, “Stability analysis and perfomance design for fuzzy-model-based control system under imperfect premise matching,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 4, pp. 949–961, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. H. D. Tuan, P. Apkarian, T. Narikiyo, and Y. Yamamoto, “Parameterized linear matrix inequality techniques in fuzzy control system design,” IEEE Transactions on Fuzzy Systems, vol. 9, no. 2, pp. 324–332, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. X. Liu and Q. Zhang, “New approaches to H∞ controller designs based on fuzzy observers for T-S fuzzy systems via LMI,” Automatica, vol. 39, no. 9, pp. 1571–1582, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Tanaka, H. Ohtake, and H. O. Wang, “Guaranteed cost control of polynomial fuzzy systems via a sum of squares approach,” IEEE Transactions on Systems, Man, and Cybernetics Part B, vol. 39, no. 2, pp. 561–567, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. H. Chien, W. Y. Wang, Y. G. Leu, and T. T. Lee, “Robust adaptive controller design for a class of uncertain nonlinear systems using online T-S fuzzy-neural modeling approach,” IEEE Transactions on Systems, Man, and Cybernetics Part B, vol. 41, no. 2, pp. 542–552, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Lemos, W. Caminhas, and F. Gomide, “Multivariable gaussian evolving fuzzy modeling system,” IEEE Transactions on Fuzzy Systems, vol. 19, no. 1, pp. 91–104, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Chadli and H. Karimi, “Robust observer design for unknown inputs Takagi-Sugeno models,” IEEE Transactions on Fuzzy Systems. In press. View at Publisher · View at Google Scholar
  32. A. Schwung, T. Gußner, and J. Adamy, “Stability analysis of recurrent fuzzy systems: a hybrid system and sos approach,” IEEE Transactions on Fuzzy Systems, vol. 19, no. 3, pp. 423–431, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Sala and C. Ariño, “Relaxed stability and performance LMI conditions for Takagi-Sugeno fuzzy systems with polynomial constraints on membership function shapes,” IEEE Transactions on Fuzzy Systems, vol. 16, no. 5, pp. 1328–1336, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Narimani and H. K. Lam, “SOS-based stability analysis of polynomial fuzzy-model-based control systems via polynomial membership functions,” IEEE Transactions on Fuzzy Systems, vol. 18, no. 5, pp. 862–871, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Sala and T. M. Guerra, “Stability analysis of fuzzy systems: membership-shape and polynomial approaches,” in Proceedings of the 17th World Congress, the International Federation of Automatic Control, pp. 5605–5610, Seoul, Republic of Korea, 2008.
  36. C. W. Park and Y. W. Cho, “T-S model based indirect adaptive fuzzy control using online parameter estimation,” IEEE Transactions on Systems, Man, and Cybernetics Part B, vol. 34, no. 6, pp. 2293–2302, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. J. Liu, W. Wang, S. C. Tong, and Y. S. Liu, “Robust adaptive tracking control for nonlinear systems based on bounds of fuzzy approximation parameters,” IEEE Transactions on Systems, Man, and Cybernetics Part A, vol. 40, no. 1, pp. 170–184, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Chadli and T. M. Guerra, “LMI solution for robust static output feedback control of Takagi-Sugeno fuzzy models,” IEEE Trans. on Fuzzy Systems, vol. 20, no. 6, 2012.
  39. C. W. Park and M. Park, “Adaptive parameter estimator based on T-S fuzzy models and its applications to indirect adaptive fuzzy control design,” Information Sciences, vol. 159, no. 1-2, pp. 125–139, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. W. Cho, C. W. Park, and M. Park, “An indirect model reference adaptive fuzzy control for SISO Takagi-Sugeno model,” Fuzzy Sets and Systems, vol. 131, no. 2, pp. 197–215, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. W. Cho, C. W. Park, J. H. Kim, and M. Park, “Indirect model reference adaptive fuzzy control of dynamic fuzzy state-space model,” IEE Proceedings, Control Theory and Applications, vol. 148, no. 4, pp. 273–282, 2001.
  42. T. J. Koo, “Stable model reference adaptive fuzzy control of a class of nonlinear systems,” IEEE Transactions on Fuzzy Systems, vol. 9, no. 4, pp. 624–636, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Tanaka, H. Yoshida, H. Ohtake, and H. O. Wang, “A sum-of-squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 4, pp. 911–922, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Prajna, A. Papachristodoulou, and F. Wu, “Nonlinear control synthesis by sum of squares optimization: a Lyapunov-based approach,” in Proc. Asian Control Conf., pp. 157–165, Melbourne, Australia, July 2004. View at Scopus
  45. A. Papachristodoulou and S. Prajna, “A tutorial on sum of squares techniques for systems analysis,” in 2005 American Control Conference, ACC, pp. 2686–2700, Portland, Ore, USA, June 2005. View at Scopus
  46. S. P. Boyd, Linear Matrix Inequalities in System and Control Theory, Society for Industrial & Applied, 1994.
  47. S. Prajna, A. Papachristodoulou, P. Seiler, and P. A. Parrilo, SOSTOOLS: Sum of Squares Optimization Toolbox for MATLAB, Version 2.00, California Institute of Technology, Pasadena, Calif, USA, 2004.