About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 281465, 14 pages
http://dx.doi.org/10.1155/2012/281465
Research Article

Energy-Aware Topology Evolution Model with Link and Node Deletion in Wireless Sensor Networks

School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China

Received 20 April 2011; Revised 10 June 2011; Accepted 6 July 2011

Academic Editor: Zidong Wang

Copyright © 2012 Xiaojuan Luo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. E. J. Newman, “The structure of scientific collaboration networks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 2, pp. 404–409, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  2. M. Faloutsos, P. Faloutsos, and C. Faioutsos, “On power-law relationships of the internet topology,” Computer Communication Review, vol. 29, no. 4, pp. 251–261, 1999.
  3. R. Albert, H. Jeong, and A. L. Barabási, “Diameter of the world-wide web,” Nature, vol. 401, no. 6749, pp. 130–131, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. B. A. Huberman, P. L. T. Pirolli, J. E. Pitkow, and R. M. Lukose, “Strong regularities in world wide web surfing,” Science, vol. 280, no. 5360, pp. 95–97, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. G. González-Parra, L. Acedo, R.-J. V. Micó, and A. J. Arenas, “Modeling the social obesity epidemic with stochastic networks,” Physica A, vol. 389, no. 17, pp. 3692–3701, 2010. View at Publisher · View at Google Scholar
  6. V. Colizza, A. Flammini, A. Maritan, and A. Vespignani, “Characterization and modeling of protein-protein interaction networks,” Physica A, vol. 352, no. 1, pp. 1–27, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. J. R. Banavar, A. Maritan, and A. Rinaldo, “Size and form in efficient transportation networks,” Nature, vol. 399, no. 6732, pp. 130–132, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Wang and P. De Wilde, “Properties of evolving e-mail networks,” Physical Review E, vol. 70, no. 6, Article ID 066121, 8 pages, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Wen, R. G. Dromey, and D. Kirk, “Software engineering and scale-free networks,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 39, no. 3, pp. 648–657, 2009. View at Publisher · View at Google Scholar
  10. D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’ networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998. View at Publisher · View at Google Scholar · View at Scopus
  11. A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,” American Association for the Advancement of Science, vol. 286, no. 5439, pp. 509–512, 1999. View at Publisher · View at Google Scholar
  12. D. Shi, L. Liu, S. X. Zhu, and H. Zhou, “Degree distributions of evolving networks,” Europhysics Letters, vol. 76, no. 4, pp. 731–737, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Shen, Z. Wang, and X. Liu, “Bounded H synchronization and state estimation for discrete time-varying stochastic complex networks over a finite horizon,” IEEE Transactions on Neural Networks, vol. 22, no. 1, pp. 145–157, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. Q. Chen and D. Shi, “The modeling of scale-free networks,” Physica A, vol. 335, no. 1-2, pp. 240–248, 2004. View at Publisher · View at Google Scholar
  15. Y. Gu and J. Sun, “A local-world node deleting evolving network model,” Physics Letters A, vol. 372, no. 25, pp. 4564–4568, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on sensor networks,” IEEE Communications Magazine, vol. 40, no. 8, pp. 102–114, 2002. View at Publisher · View at Google Scholar
  17. G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella, “Energy conservation in wireless sensor networks: a survey,” Ad Hoc Networks, vol. 7, no. 3, pp. 537–568, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. B. Shen, Z. Wang, Y. S. Hung, and G. Chesi, “Distributed H filtering for polynomial nonlinear stochastic systems in sensor networks,” IEEE Transactions on Industrial Electronics, vol. 58, no. 5, pp. 1971–1979, 2011.
  19. J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,” Computer Networks, vol. 52, no. 12, pp. 2292–2330, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Dong, Z. Wang, D. W. C. Ho, and H. Gao, “Variance-constrained H filtering for a class of nonlinear time-varying systems with multiple missing measurements: the finite-horizon case,” IEEE Transactions on Signal Processing, vol. 58, no. 5, pp. 2534–2543, 2010. View at Publisher · View at Google Scholar
  21. B. Shen, Z. Wang, and Y. S. Hung, “Distributed H-consensus filtering in sensor networks with multiple missing measurements: the finite-horizon case,” Automatica, vol. 46, no. 10, pp. 1682–1688, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Dong, Z. Wang, and H. Gao, “Robust H filtering for a class of nonlinear networked systems with multiple stochastic communication delays and packet dropouts,” IEEE Transactions on Signal Processing, vol. 58, no. 4, pp. 1957–1966, 2010. View at Publisher · View at Google Scholar
  23. A. Vázquez, “Growing network with local rules: preferential attachment, clustering hierarchy, and degree correlations,” Physical Review E, vol. 67, no. 5, Article ID 056104, 15 pages, 2003. View at Scopus
  24. X. Li and G. Chen, “A local-world evolving network model,” Physica A, vol. 328, no. 1-2, pp. 274–286, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  25. H. Zhu, H. Luo, H. Peng, L. Li, and Q. Luo, “Complex networks-based energy-efficient evolution model for wireless sensor networks,” Chaos, Solitons and Fractals, vol. 41, no. 4, pp. 1828–1835, 2009. View at Publisher · View at Google Scholar
  26. L. J. Chen, Y. C. Mao, D. X. Chen, and L. Xie, “Topology control of wireless sensor networks under an average degree constraint,” Chinese Journal of Computers, vol. 30, no. 9, pp. 1544–1550, 2007. View at Scopus
  27. J. S. Kong and V. P. Roychowdhury, “Preferential survival in models of complex ad hoc networks,” Physica A, vol. 387, no. 13, pp. 3335–3347, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. N. Sarshar and V. Roychowdhury, “Scale-free and stable structures in complex ad hoc networks,” Physical Review E, vol. 69, no. 2, Article ID 026101, 6 pages, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Li, L. Li, and Y. Yang, “A local-world heterogeneous model of wireless sensor networks with node and link diversity,” Physica A, vol. 390, no. 6, pp. 1182–1191, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. A. L. Barabási, R. Albert, and H. Jeong, “Mean-field theory for scale-free random networks,” Physica A, vol. 272, no. 1, pp. 173–187, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, “Complex networks: structure and dynamics,” Physics Reports, vol. 424, no. 4-5, pp. 175–308, 2006. View at Publisher · View at Google Scholar