Abstract

This paper deals with the problem of robust stabilization of stochastic systems with time-delay and nonlinear uncertainties via memory state feedback. Based on Lyapunov krasoviskii functional, some sufficient conditions on local (global) stabilization are given in terms of matrix inequalities. In particular, these stabilizable conditions for a class of nonlinear stochastic time-delay systems are derived in the form of linear matrix inequalities, which have the advantage of easy computation. Moreover, the corresponding results are further extended to the stochastic multiple time-delays systems. Finally, an example is presented to show the superiority of memory state feedback controller to memoryless state feedback controller.

1. Introduction

Stochastic differential delay equations are one of the most useful stochastic models in applications, for example, aircraft, chemical or process control system, and distributed networks. It is known that time-delay is, in many cases, a source of poor system performance or instability. Hence, the stability and stabilization of stochastic time delay systems have been recently attracting the attention of a number of researchers, see [1–18] and the references therein. In [2], the authors studied the stability of linear stochastic systems with uncertain time delay by generalized Riccati equation approach, while [3] extended the results of [2] to nonlinear case via linear matrix inequalities. Reference [4] investigated the problems of stabilization for a class of linear stochastic systems with norm-bounded uncertainties and state delay, and it developed two criteria for the stability analysis: delay-dependent and delay-independent. The memoryless nonfragile state feedback control law for nonlinear stochastic time-delay systems was designed in [5], in which new sufficient conditions for the existence of such controllers were presented based on the linear matrix inequalities approach. Reference [6] was concerned with the stability analysis and proposed improved delay-dependent stability criteria for uncertain stochastic systems with interval time-varying delay. The study of exponential stability of stochastic delay-differential equations was discussed in [7–9]. The output feedback stabilization of stochastic nonlinear time-delay systems was investigated in [10], and some stabilization criterions for nonlinear stochastic time-delay systems with state and control-dependent noise were given in [11, 12] by means of matrix inequalities.

We usually design memoryless state feedback controller for the stabilization of systems because of its advantage of easy implementation. However, its performance, for time-delay systems, cannot be better than a memory state feedback controller which utilizes the available information of the size of delay. Reference [19] has given a general form of a memory state feedback (delayed feedback) controller: ξ€œπ‘’(𝑑)=𝐺π‘₯(𝑑)+π‘‘π‘‘βˆ’πœπΊ1(𝑠)π‘₯(𝑠)𝑑𝑠.(1.1) But the task of storing all the previous states π‘₯(β‹…) and computing the values of time-varying gain matrices 𝐺1(β‹…) makes the practical realization of infinite-dimensional controller (1.1) very difficult. For these reasons, the controller 𝑒(𝑑)=𝐺π‘₯(𝑑)+𝐺2π‘₯(π‘‘βˆ’πœ)(1.2) could be considered as a compromise between the performance improvement and the implementation simplicity. Reference [20] gave the sufficient conditions for the stabilization of deterministic state-delayed systems. References [21] and [22] designed a memory state feedback controller for neutral time-delay systems and singular timedelay systems, respectively. Reference [23] studied the stabilization problem for a class of discrete-time Markovian jump linear systems with time-delays both in the system state and in the mode signal via time-delayed controller and obtained a sufficient condition. What [13] actually studied is the stabilization problem of linear stochastic time-delay systems using generalized Riccati equation method. Up to now, to the best of the authors’ knowledge, the issue on memory state feedback stabilization of stochastic systems with time-delay and nonlinear uncertainties has not been fully investigated in previous literatures.

In this paper, we consider the problem on robust stabilization for stochastic systems with time-delay and nonlinear uncertainties via memory state feedback. This problem contains three inevitable aspects of practical application: timedelay, nonlinear uncertainties and more effective controller, which is more complex than the stabilization of pure stochastic systems via memoryless control. These complexities result in some difficulties of memory stabilizing controller design. By the ItΓ΄ formula, mathematical expectation properties, and matrix transformation, some sufficient conditions are obtained on locally and globally asymptotic stabilization in probability by means of matrix inequalities. Especially for a class of nonlinear stochastic time-delay systems, a sufficient condition for the existence of memory state feedback stabilizing controller is obtained in terms of LMIs, which has the advantage of easy computation. Meanwhile, a memoryless state feedback controller is also given as a special case of memory state feedback controller. Moreover, the robust stabilization problem for stochastic multiple time-delays systems is further studied and a general sufficient condition is derived.

The paper is organized as follows. Some preliminaries and problem formulations are presented in Section 2. In Section 3, main results are given. Section 4 presents one example to illustrate the effectiveness of our developed results. Section 5 concludes this paper.

Notation 1. 𝐴′: the transpose of matrix 𝐴; 𝐴β‰₯0(𝐴>0): 𝐴 is positive semidefinite (positive definite) symmetric matrix; 𝐼: identity matrix; β€–β‹…β€–: Euclidean norm; 𝐿2β„±([0, ∞), 𝐑𝑙): space of nonanticipative stochastic process 𝑦(𝑑)βˆˆπ‘π‘™ with respect to an increasing 𝜎-algebra ℱ𝑑(𝑑β‰₯0) satisfying 𝐸∫∞0‖𝑦(𝑑)β€–2𝑑𝑑<∞. 𝐼𝑛×𝑛: 𝑛×𝑛 identity matrix.

2. Preliminaries and Problem Statement

Consider the following continuous nonlinear stochastic time-delay systems: 𝑑π‘₯(𝑑)=𝐴π‘₯(𝑑)+𝐡π‘₯(π‘‘βˆ’πœ)+𝐡1𝑒(𝑑)+𝐻0ξ€Έ+ξ€·(π‘₯(𝑑),π‘₯(π‘‘βˆ’πœ),𝑒(𝑑))𝑑𝑑𝐢π‘₯(𝑑)+𝐷π‘₯(π‘‘βˆ’πœ)+𝐷1𝑒(𝑑)+𝐻1(ξ€Έπ‘₯(𝑑),π‘₯(π‘‘βˆ’πœ),𝑒(𝑑))𝑑𝑀(𝑑),π‘₯(𝑑)=(𝑑)∈𝐿2ξ€·πœ”,β„±0[],𝐢(βˆ’πœ,0,𝑅𝑛)ξ€Έ[],,π‘‘βˆˆβˆ’πœ,0(2.1) where π‘₯(𝑑)βˆˆπ‘π‘› and 𝑒(𝑑)βˆˆπ‘π‘š are system state and control input, respectively; 𝑀(𝑑) is 1-dimensional standard Wiener process defined on the probability space (Ξ©, β„±, ℱ𝑑, 𝑃) with 𝐹𝑑=𝜎{𝑀(𝑠)∢0≀𝑠≀𝑑}; 𝐻𝑖(0,β‹…,β‹…)=0, 𝑖=0,1; 𝐴, 𝐡, 𝐡1, 𝐢, 𝐷, and 𝐷1 are constant matrices; 𝜏>0 is a certain timedelay. Under very mild conditions on 𝐻𝑖(0,β‹…,β‹…), 𝑖=0, 1, (2.1) exists a unique global solution [1]. It should be pointed out that any general nonlinear stochastic system which is sufficiently differentiable can take the form of (2.1) via Taylor’s series expansion at the origin.

Next, we give the following definitions essential for the paper.

Definition 2.1 (see [1]). System (2.1) with 𝑒(𝑑)=0 is said to be stable in probability, if for any πœ–>0, limπ‘₯β†’0𝑃sup𝑑β‰₯0ξ‚Άβ€–π‘₯(𝑑)β€–>πœ–=0.(2.2) Additionally, if we also have limπ‘₯0β†’0𝑃limπ‘‘β†’βˆžξ‚Άπ‘₯(𝑑)=0=1,(2.3) then system (2.1) with 𝑒(𝑑)=0 is said to be locally asymptotically stable in probability.
If (2.2) holds and𝑃limπ‘‘β†’βˆžξ‚Άπ‘₯(𝑑)=0=1(2.4) for all π‘₯0βˆˆπ‘π‘›, then system (2.1) with 𝑒(𝑑)=0 is said to be globally asymptotically stable in probability.

Definition 2.2. If there exists a constant memory state feedback control law 𝑒(𝑑)=𝐾1π‘₯(𝑑)+𝐾2π‘₯(π‘‘βˆ’πœ),(2.5) such that the equilibrium point of the closed-loop system 𝑑π‘₯(𝑑)=𝐴+𝐡1𝐾1ξ€Έπ‘₯ξ€·(𝑑)+𝐡+𝐡1𝐾2ξ€Έπ‘₯(π‘‘βˆ’πœ)+𝐻0ξ€·π‘₯(𝑑),π‘₯(π‘‘βˆ’πœ),𝐾1π‘₯(𝑑)+𝐾2π‘₯+(π‘‘βˆ’πœ)𝑑𝑑𝐢+𝐷1𝐾1ξ€Έξ€·π‘₯(𝑑)+𝐷+𝐷1𝐾2ξ€Έπ‘₯(π‘‘βˆ’πœ)+𝐻1ξ€·π‘₯(𝑑),π‘₯(π‘‘βˆ’πœ),𝐾1π‘₯(𝑑)+𝐾2π‘₯[](π‘‘βˆ’πœ)𝑑𝑀(𝑑),π‘₯(𝑑)=(𝑑),βˆ’πœ,0(2.6) is asymptotically stable in probability [1] for all 𝜏>0, then stochastic time-delay differential system (2.1) is called locally robustly stabilizable. If (2.6) is robustly stable [2], that is, the equilibrium point of (2.6) is asymptotically stable in the large [1] for all 𝜏>0, (2.1) is globally robustly stabilizable.

Remark 2.3. Definition 2.2 gives locally (globally) robustly stabilizable of stochastic time-delay systems via memory state feedback control law 𝑒(𝑑)=𝐾1π‘₯(𝑑)+𝐾2π‘₯(π‘‘βˆ’πœ), which is more general than that via memoryless state feedback control law [12]. This is because Definition 2.2 reduces to the corresponding definition under memoryless state feedback control law when 𝐾2=0.

The aim of this paper is to find a constant memory state feedback control law (2.5), such that the equilibrium point of (2.6) is asymptotically stable in probability for all 𝜏>0.

3. Main Results

In this section, we will give some sufficient conditions of the stabilization of system (2.1). Without loss of generality, we can give the following assumption for nonlinear function 𝐻𝑖.

Assumption 3.1. There exists an πœ–>0, such that‖‖𝐻sup𝑖π‘₯,𝑦,𝐾1π‘₯+𝐾2𝑦‖‖(β‰€πœ–β€–π‘₯β€–+‖𝑦‖),𝑖=0,1,(3.1) holds for all π‘₯,π‘¦βˆˆπ” (a neighborhood of the origin).

The following general theorem is presented, which yields several applicable corollaries.

Theorem 3.2. If (3.1) holds and 𝐾1, 𝐾2βˆˆπ‘π‘šΓ—π‘›, 𝑃>0, 𝑄>0 are the solutions of the following matrix inequality 𝑍+𝑍1<0,(3.2) then system (2.1) can be locally robustly stabilized by (2.5). If 𝐔 is replaced by 𝐑𝑛, then system (2.1) can be globally robustly stabilized by the same controller.
In (3.2), 𝑍 and 𝑍1 are defined byβŽ‘βŽ’βŽ’βŽ£Ξ£π‘=1Ξ£2βˆ—ξ€·π·+𝐷1𝐾2′𝑃𝐷+𝐷1𝐾2ξ€ΈβŽ€βŽ₯βŽ₯⎦,π‘βˆ’π‘„1=⎑⎒⎒⎣Σ300Ξ£4⎀βŽ₯βŽ₯⎦,(3.3) where Ξ£1ξ€·=𝑃𝐴+𝐡1𝐾1ξ€Έ+𝐴+𝐡1𝐾1ξ€Έξ…žξ€·π‘ƒ+𝑄+𝐢+𝐷1𝐾1ξ€Έξ…žπ‘ƒξ€·πΆ+𝐷1𝐾1ξ€Έ,Ξ£2ξ€·=𝑃𝐡+𝐡1𝐾2ξ€Έ+𝐢+𝐷1𝐾1ξ€Έξ…žπ‘ƒξ€·π·+𝐷1𝐾2ξ€Έ,Ξ£3‖‖𝐷=πœ–3+3‖𝐢‖+31‖‖⋅‖‖𝐾1‖‖‖‖𝐷+3πœ–+‖𝐷‖+πœ–1‖‖⋅‖‖𝐾2‖‖Σ‖𝑃‖𝐼,4‖‖𝐷=πœ–3+‖𝐷‖+1‖‖⋅‖‖𝐾2β€–β€–+‖𝐢‖+‖𝐷1‖⋅‖𝐾1ξ€Έβ€–+2πœ–β€–π‘ƒβ€–πΌ.(3.4)

Proof. Choose the following Lyapunov-Krasoviskii functional: 𝑉(𝑑,π‘₯)=π‘₯ξ…žξ€œ(𝑑)𝑃π‘₯(𝑑)+𝜏0π‘₯ξ…ž(π‘‘βˆ’π‘ )𝑄π‘₯(π‘‘βˆ’π‘ )𝑑𝑠,(3.5) where 𝑃>0 and 𝑄>0 are the solutions of (3.2). Let β„’ be the infinitesimal generator of the closed-loop system (2.6), then, by the Itô’s formula, we have ℒ𝑉(𝑑,π‘₯(𝑑))=π‘₯ξ…žξ‚ƒπ‘ƒξ€·(𝑑)𝐴+𝐡1𝐾1ξ€Έ+𝐴+𝐡1𝐾1ξ€Έξ…žξ€·π‘ƒ+𝑄+𝐢+𝐷1𝐾1ξ€Έξ…žπ‘ƒξ€·πΆ+𝐷1𝐾1ξ€Έξ‚„π‘₯(𝑑)+2π‘₯ξ…žξ‚ƒπ‘ƒξ€·(𝑑)𝐡+𝐡1𝐾2ξ€Έ+𝐢+𝐷1𝐾1ξ€Έξ…žξ€·β‹…π‘ƒπ·+𝐷1𝐾2ξ€Έξ‚„π‘₯(π‘‘βˆ’πœ)+π‘₯ξ…žβ‹…ξ‚ƒξ€·(π‘‘βˆ’πœ)𝐷+𝐷1𝐾2ξ€Έξ…žπ‘ƒξ€·π·+𝐷1𝐾2ξ€Έξ‚„βˆ’π‘„π‘₯(π‘‘βˆ’πœ)+2π»ξ…ž0𝑃π‘₯(𝑑)+2π»ξ…ž1𝑃𝐷+𝐷1𝐾2ξ€Έπ‘₯(π‘‘βˆ’πœ)+2π»ξ…ž1𝑃𝐢+𝐷1𝐾1ξ€Έπ‘₯(𝑑)+π»ξ…ž1𝑃𝐻1=⎑⎒⎒⎣⎀βŽ₯βŽ₯⎦π‘₯(𝑑)π‘₯(π‘‘βˆ’πœ)ξ…žπ‘βŽ‘βŽ’βŽ’βŽ£βŽ€βŽ₯βŽ₯⎦π‘₯(𝑑)π‘₯(π‘‘βˆ’πœ)+2π»ξ…ž0𝑃π‘₯(𝑑)+π»ξ…ž1𝑃𝐻1+2π»ξ…ž1𝑃𝐷+𝐷1𝐾2ξ€Έπ‘₯(π‘‘βˆ’πœ)+2π»ξ…ž1𝑃𝐢+𝐷1𝐾1ξ€Έπ‘₯(𝑑).(3.6) In addition, by (3.1), we obtain 2π»ξ…ž0𝑃π‘₯(𝑑)+2π»ξ…ž1𝑃𝐷+𝐷1𝐾2ξ€Έπ‘₯(π‘‘βˆ’πœ)+2π»ξ…ž1𝑃𝐢+𝐷1𝐾1ξ€Έπ‘₯(𝑑)+π»ξ…ž1𝑃𝐻1‖‖𝐷≀2πœ–β€–π‘ƒβ€–1+‖𝐢‖+1‖‖⋅‖‖𝐾1β€–β€–ξ€Έ+πœ–β€–π‘₯(𝑑)β€–2‖‖𝐷+2πœ–β€–π‘ƒβ€–1+‖𝐢‖+1‖‖⋅‖‖𝐾1‖‖‖‖𝐷+‖𝐷‖+1‖‖⋅‖‖𝐾2β€–β€–ξ€Έβ€–+ξ€·+πœ–β€–π‘₯(𝑑)β€–β‹…β€–π‘₯(π‘‘βˆ’πœ)2πœ–+πœ–2ξ€Έ(‖𝑃‖⋅‖π‘₯π‘‘βˆ’πœ)β€–2.(3.7) By inequality |π‘Žπ‘|≀(1/2)(π‘Ž2+𝑏2), then (3.7) becomes 2π»ξ…ž0𝑃π‘₯(𝑑)+2π»ξ…ž1𝑃𝐷+𝐷1𝐾2ξ€Έπ‘₯(π‘‘βˆ’πœ)+2π»ξ…ž1𝑃𝐢+𝐷1𝐾1ξ€Έπ‘₯(𝑑)+π»ξ…ž1𝑃𝐻1ξ€·β€–β€–π·β‰€πœ–3+3‖𝐢‖+31‖‖⋅‖‖𝐾1‖‖‖‖𝐷+3πœ–+‖𝐷‖+1‖‖⋅‖‖𝐾2β€–β€–ξ€Έ(‖𝑃‖𝐼‖π‘₯𝑑)β€–2‖‖𝐷+πœ–3+‖𝐷‖+1‖‖⋅‖‖𝐾2β€–β€–+‖‖𝐾2‖‖‖𝐢‖+‖𝐷1‖⋅‖𝐾1ξ€Έβ€–β€–+2πœ–β€–π‘ƒβ€–πΌβ€–π‘₯(π‘‘βˆ’πœ)2=⎑⎒⎒⎣⎀βŽ₯βŽ₯⎦π‘₯(𝑑)π‘₯(π‘‘βˆ’πœ)ξ…žπ‘1⎑⎒⎒⎣⎀βŽ₯βŽ₯⎦.π‘₯(𝑑)π‘₯(π‘‘βˆ’πœ)(3.8) Substituting (3.8) into (3.6), it follows ⎑⎒⎒⎣⎀βŽ₯βŽ₯βŽ¦β„’π‘‰(𝑑,π‘₯(𝑑))≀π‘₯(𝑑)π‘₯(π‘‘βˆ’πœ)ξ…žξ€·π‘+𝑍1ξ€ΈβŽ‘βŽ’βŽ’βŽ£βŽ€βŽ₯βŽ₯⎦π‘₯(𝑑)π‘₯(π‘‘βˆ’πœ).(3.9) According to (3.2), that is ℒ𝑉(𝑑,π‘₯(𝑑))<0 in the domain {𝑑>0}×𝐔 for π‘₯β‰ 0, so the local stabilization of Theorem 3.2 is obtained by Corollary of [1]. By the same discussion, the global stabilization conditions can be also obtained by Theorem 4.4 of [1].

From Theorem 3.2, we can derive some useful results, which can be expressed in terms of LMIs.

Corollary 3.3. If 𝐻𝑖≑0, 𝑖=0, 1, and the matrix inequality 𝑍<0 has solutions 𝑃>0, 𝑄>0 and 𝐾1, 𝐾2βˆˆπ‘π‘šΓ—π‘›, then the linear stochastic time-delay system 𝑑π‘₯(𝑑)=𝐴π‘₯(𝑑)+𝐡π‘₯(π‘‘βˆ’πœ)+𝐡1𝑒(𝑑)𝑑𝑑+𝐢π‘₯(𝑑)+𝐷π‘₯(π‘‘βˆ’πœ)+𝐷1𝑒(𝑑)𝑑𝑀(𝑑)(3.10) is globally robustly stabilizable. If 𝐷=0, 𝐷1=0, and the following LMI: ⎑⎒⎒⎒⎒⎒⎒⎣Σ5𝑃𝑃𝐢′𝐡1π‘‹ξξπΆξξπ‘ƒβˆ’π‘„00𝑃0βˆ’π‘ƒ0π‘‹π΅ξ…ž1ξπ‘„βŽ€βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯⎦00βˆ’<0(3.11) has solutions 𝑃>0, π‘Œβˆˆπ‘π‘šΓ—π‘›, π‘‹βˆˆπ‘π‘›Γ—π‘š, and 𝑄>0, then 𝑑π‘₯(𝑑)=𝐴π‘₯(𝑑)+𝐡π‘₯(π‘‘βˆ’πœ)+𝐡1𝑒(𝑑)𝑑𝑑+𝐢π‘₯(𝑑)𝑑𝑀(𝑑)(3.12) is globally robustly stabilizable, where Ξ£5𝑃=𝐴+𝑃𝐴′+𝐡1π‘Œ+π‘Œβ€²π΅ξ…ž1+𝐡𝑄𝐡′+π΅π‘‹π΅ξ…ž1+𝐡1𝑋𝐡′, and a stabilizing feedback control law 𝑒(𝑑)=𝐾1π‘₯(𝑑)+𝐾2𝑃π‘₯(π‘‘βˆ’πœ)=π‘Œβˆ’1𝑄π‘₯(𝑑)+π‘‹βˆ’1π‘₯(π‘‘βˆ’πœ).

Proof. If 𝐻𝑖(β‹…,β‹…,β‹…)=0, 𝑖=0,1, we can take πœ–=0 in (3.1), then ℒ𝑉(𝑑,π‘₯(𝑑))<0 for (𝑑,π‘₯)βˆˆπ‘‘>0×𝐑𝑛, except possibly at π‘₯=0.
Thus, the first part of Corollary 3.3 is proved.
Furthermore, if 𝐷=0, 𝐷1=0, (3.2) degenerates intoβŽ‘βŽ’βŽ’βŽ£Ξ£π‘=6𝑃𝐡+𝐡1𝐾2𝐡+𝐡1𝐾2ξ€ΈβŽ€βŽ₯βŽ₯βŽ¦β€²π‘ƒβˆ’π‘„<0,(3.13) where Ξ£6=𝑃(𝐴+𝐡1𝐾1)+(𝐴+𝐡1𝐾1)′𝑃+𝑄+𝐢′𝑃𝐢.
According to Schur’s complement, (3.13) is equivalent toΞ£6ξ€·+𝑃𝐡+𝐡1𝐾2ξ€Έπ‘„βˆ’1𝐡+𝐡1𝐾2′𝑃<0.(3.14) Then, pre- and post-(3.14) by π‘ƒβˆ’1, we have π‘ƒβˆ’1Ξ£6π‘ƒβˆ’1+𝐡+𝐡1𝐾2ξ€Έπ‘„βˆ’1𝐡+𝐡1𝐾2ξ€Έβ€²<0.(3.15) Setting 𝑃=π‘ƒβˆ’1, π‘Œ=𝐾1π‘ƒβˆ’1, 𝑄=π‘„βˆ’1, and 𝑋=𝐾2π‘„βˆ’1. Again, by Schur’s complement, (3.15) is equivalent to (3.11). Thus, the second part of Corollary 3.3 is also proved.

Remark 3.4. Reference [13] considered the analogous problem to Corollary 3.3 by delay feedback, where the main result is expressed by means of generalized algebraic Riccati equations (GAREs) GAREs. However, Corollary 3.3 gives a sufficient condition in terms of LMIs which are easy to be solved.

Corollary 3.5. If the following LMI: βŽ‘βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ£Ξ“βˆ—1√2ξξβˆšπ‘ƒπΆβ€²π‘ƒπ΅β€²00√2πΆπ‘ƒβˆ’π‘ƒ0000𝑃0βˆ’πΌ000𝐡00βˆ’πΌ2π·β€²πΎξ…ž2π΅ξ…ž1√0002π·βˆ’π‘ƒ0000𝐡1𝐾2ξπ‘ƒβŽ€βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯⎦0βˆ’<0,(3.16) has solution 𝑃>0, π‘Œ, and 𝐾2, then the stochastic linear time-delay controlled system 𝑑π‘₯(𝑑)=𝐴π‘₯(𝑑)+𝐡π‘₯(π‘‘βˆ’πœ)+𝐡1𝑒(𝑑)𝑑𝑑+𝐢π‘₯(𝑑)+𝐷π‘₯(π‘‘βˆ’πœ)+𝐷1𝑒(𝑑)𝑑𝑀(𝑑)(3.17) is globally robustly stabilizable, where Ξ“βˆ—1𝑃=𝐴′+𝑃𝐴+𝐡1π‘Œ+π‘Œβ€²π΅ξ…ž1+𝑃. Moreover, the stabilizing feedback control law 𝑃𝑒(𝑑)=π‘Œβˆ’1π‘₯(𝑑)+𝐾2π‘₯(π‘‘βˆ’πœ).(3.18)

Proof. Applying the well-known inequality π‘‹β€²π‘Œ+π‘Œβ€²π‘‹β‰€π›Ύπ‘‹β€²π‘‹+π›Ύβˆ’1π‘Œβ€²π‘Œ,βˆ€π›Ύ>0,(3.19) and supposing 𝛾=1 for simplicity, we have 2π‘₯β€²(𝑑)𝑃𝐡1𝐾2π‘₯(π‘‘βˆ’πœ)+2π‘₯ξ…žξ€·(𝑑)𝐢+𝐷1𝐾1′𝑃⋅𝐷+𝐷1𝐾2ξ€Έπ‘₯(π‘‘βˆ’πœ)≀π‘₯ξ…žξ‚ƒξ€·(𝑑)𝑃+𝐢+𝐷1𝐾1ξ€Έξ…žπ‘ƒξ€·πΆ+𝐷1𝐾1ξ€Έξ‚„π‘₯(𝑑)+π‘₯ξ…žξ‚ƒπΎ(π‘‘βˆ’πœ)ξ…ž2π΅ξ…ž1𝑃𝐡1𝐾2+𝐷+𝐷1𝐾2ξ€Έξ…žξ€·π‘ƒβ‹…π·+𝐷1𝐾2ξ€Έξ‚„π‘₯(π‘‘βˆ’πœ).(3.20) Let Ξ“1=Ξ£1+𝑃+(𝐢+𝐷1𝐾1)′𝑃(𝐢+𝐷1𝐾1), Ξ“2=2(𝐷+𝐷1𝐾2)′𝑃(𝐷+𝐷1𝐾2)+πΎξ…ž2π΅ξ…ž1𝑃𝐡1𝐾2βˆ’π‘„. Then, βŽ‘βŽ’βŽ’βŽ£Ξ“π‘β‰€1π‘ƒπ΅βˆ—Ξ“2⎀βŽ₯βŽ₯⎦=Ξ“.(3.21) Obviously, if Ξ“<0, then 𝑍<0. Applying the Theorem 3.2, the closed-loop system of (3.17) is robustly stable [2].
Then, pre- and post-multiplying Ξ“<0 by diag{π‘ƒβˆ’1,𝐼}, and by Schur’s complement, we have Ξ“<0 is equivalent toβŽ‘βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ£Ξ“βˆ—1√2π‘ƒβˆ’1πΆβ€²π‘ƒβˆ’1βˆšπ΅β€²002πΆπ‘ƒβˆ’1βˆ’π‘ƒβˆ’1𝑃0000βˆ’10βˆ’π‘„βˆ’1√000𝐡00βˆ’π‘„2π·β€²πΎξ…ž2π΅ξ…ž1√0002π·βˆ’π‘ƒβˆ’10000𝐡1𝐾20βˆ’π‘ƒβˆ’1⎀βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯⎦<0,(3.22) where Ξ“βˆ—1=π΄π‘ƒβˆ’1+π‘ƒβˆ’1𝐴+𝐡1𝐾1π‘ƒβˆ’1+π‘ƒβˆ’1πΎξ…ž1π΅ξ…ž1+π‘ƒβˆ’1. Set 𝑃=π‘ƒβˆ’1, π‘Œ=𝐾1π‘ƒβˆ’1=𝐾1𝑃, 𝑄=𝐼, (3.22) is equivalent to (3.16). This ends the proof of Corollary 3.5.

Below, for 𝐷=0, 𝐷1=0, we give another sufficient condition for the local (global) stabilization of system (2.1) in the terms of LMIs.

Theorem 3.6. For 𝐷=0, 𝐷1=0 in (2.1), suppose (3.1) holds for all π‘₯,π‘¦βˆˆπ”(π‘₯,π‘¦βˆˆπ‘π‘›). If the LMIs: ⎑⎒⎒⎒⎒⎒⎒⎒⎒⎒⎣Π1ξπ‘ƒξπ‘ƒβˆš2𝑃𝐢′𝐡+𝐡1𝐾2ξξξπ›Όπ‘ƒβˆ’π‘„000𝑃0βˆ’6πœ–2√𝐼002𝐢𝑃00βˆ’π‘ƒ0𝐡′+πΎξ…ž2π΅ξ…ž1000βˆ’πœ–2𝐼⎀βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯⎦<0,(3.23)𝑃≀𝛼𝐼,(3.24)𝑄≀𝛼𝐼7πœ–2,(3.25)0<𝛼≀1,(3.26) have solutions 𝑃>0, 𝛼, 𝑄>0, 𝐾2, and π‘Œβˆˆπ‘π‘šΓ—π‘›, then system (2.1) can be locally (globally) robustly stabilized by 𝑃𝑒(𝑑)=π‘Œβˆ’1π‘₯(𝑑)+𝐾2π‘₯(π‘‘βˆ’πœ),(3.27) where Ξ 1=𝐴𝑃+𝑃𝐴′+𝐡1π‘Œ+π‘Œβ€²π΅β€²1+𝑃.

Proof. Applying the well-known inequality (3.19) again and supposing 𝛾=1 for simplicity, we have (if 0<𝑃≀𝐼/𝛼 for some 𝛼>0) 2π»ξ…ž0𝑃π‘₯(𝑑)+2π»ξ…ž1𝑃𝐢π‘₯(𝑑)+π»ξ…ž1𝑃𝐻1≀6πœ–2𝛼(β€–π‘₯𝑑)β€–2+β€–π‘₯(π‘‘βˆ’πœ)β€–2ξ€Έ+π‘₯β€²(𝑑)(𝑃+𝐢′𝑃𝐢)π‘₯(𝑑)(3.28) which holds because 2π»ξ…ž0𝑃π‘₯=π»ξ…ž0𝑃1/2⋅𝑃1/2π‘₯+π‘₯′𝑃1/2⋅𝑃1/2π»ξ…ž0β‰€π»ξ…ž0𝑃𝐻0≀+π‘₯′𝑃π‘₯2πœ–2𝛼‖π‘₯(𝑑)β€–2+β€–π‘₯(π‘‘βˆ’πœ)β€–2𝐻+π‘₯′𝑃π‘₯,ξ…ž1𝑃𝐻1≀2πœ–2𝛼‖π‘₯(𝑑)β€–2+β€–π‘₯(π‘‘βˆ’πœ)β€–2ξ€Έ,2π»ξ…ž1𝑃𝐢π‘₯=π»ξ…ž1𝑃1/2⋅𝑃1/2𝐢π‘₯+π‘₯′𝐢′𝑃1/2⋅𝑃1/2π»ξ…ž1≀2πœ–2𝛼(β€–π‘₯𝑑)β€–2+β€–π‘₯(π‘‘βˆ’πœ)β€–2ξ€Έ+π‘₯β€²(𝑑)𝐢′𝑃𝐢π‘₯(𝑑).(3.29) Substituting (3.28) into (3.6), it follows that ⎑⎒⎒⎣⎀βŽ₯βŽ₯βŽ¦β„’π‘‰(𝑑,π‘₯(𝑑))≀π‘₯(𝑑)π‘₯(π‘‘βˆ’πœ)ξ…žξπ‘βŽ‘βŽ’βŽ’βŽ£βŽ€βŽ₯βŽ₯⎦π‘₯(𝑑)π‘₯(π‘‘βˆ’πœ),(3.30) where ξβŽ‘βŽ’βŽ’βŽ£Ξ π‘=βˆ—1+6π›Όπœ–2𝐼𝑃𝐡+𝐡1𝐾2ξ€Έβˆ—6π›Όπœ–2⎀βŽ₯βŽ₯βŽ¦πΌβˆ’π‘„.(3.31) Considering (3.24), (3.25), and (3.26), it follows that ξβŽ‘βŽ’βŽ’βŽ£Ξ π‘β‰€βˆ—1+6π›Όπœ–2𝐼𝑃𝐡+𝐡1𝐾2ξ€Έβˆ—βˆ’πœ–2𝐼⎀βŽ₯βŽ₯⎦.(3.32) Let 𝑍1=βŽ‘βŽ’βŽ’βŽ£Ξ βˆ—1+6π›Όπœ–2𝐼𝑃𝐡+𝐡1𝐾2ξ€Έβˆ—βˆ’πœ–2𝐼⎀βŽ₯βŽ₯⎦,(3.33) where Ξ βˆ—1=𝑃(𝐴+𝐡1𝐾1)+(𝐴+𝐡1𝐾1)′𝑃+𝑄+𝑃+2𝐢′𝑃𝐢.
Obviously, if 𝑍1<0, then 𝑍<0. So if (3.1) holds for all π‘₯βˆˆπ”(π‘₯βˆˆπ‘π‘›), and 𝑍<0, then system (2.1) can be locally (globally) robustly stabilized by 𝑒(𝑑)=𝐾1π‘₯(𝑑)+𝐾2π‘₯(π‘‘βˆ’πœ).
Note that 𝑍1<0 is equivalent to that𝑃𝐴+𝐡1𝐾1ξ€Έ+𝐴+𝐡1𝐾1ξ€Έ6′𝑃+𝑄+𝑃+2𝐢′𝑃𝐢+π›Όπœ–2𝐼+𝑃𝐡+𝐡1𝐾2ξ€Έπœ–βˆ’2πΌξ€·πΎξ…ž2π΅ξ…ž1ξ€Έ+𝐡′𝑃<0.(3.34) Then pre- and postmultiply (3.34) by π‘ƒβˆ’1, we have 𝐴+𝐡1𝐾1ξ€Έπ‘ƒβˆ’1+π‘ƒβˆ’1𝐴+𝐡1𝐾1ξ€Έξ…ž+π‘ƒβˆ’1π‘„π‘ƒβˆ’1+π‘ƒβˆ’1+2π‘ƒβˆ’1πΆβ€²π‘ƒπΆπ‘ƒβˆ’1+π‘ƒβˆ’16π›Όπœ–2πΌπ‘ƒβˆ’1+𝐡+𝐡1𝐾2ξ€Έπœ–βˆ’2πΌξ€·πΎξ…ž2π΅ξ…ž1ξ€Έ+𝐡′<0.(3.35) Setting 𝑃=π‘ƒβˆ’1, π‘Œ=𝐾1π‘ƒβˆ’1=𝐾1𝑃, and 𝑄=π‘„βˆ’1 by the Schur’s complement, (3.35) is equivalent to (3.23). Thus, the theorem is proved.

In the special case when 𝐾2=0, our results reduce the corresponding results in memoryless state feedback case. The following theorem gives a sufficient condition for the existence of memoryless state feedback controller of system (2.1) with 𝐷=0, 𝐷1=0.

Theorem 3.7. For 𝐷=0, 𝐷1=0 in (2.1), suppose there exists an πœ–>0, sup‖𝐻𝑖π‘₯,𝑦,𝐾1π‘₯ξ€Έβ€–β‰€πœ–(β€–π‘₯β€–+‖𝑦‖),𝑖=0,1,(3.36) holds for all π‘₯, π‘¦βˆˆπ”(π‘₯,π‘¦βˆˆπ‘π‘›), if the LMIs ⎑⎒⎒⎒⎒⎒⎒⎒⎒⎒⎣Π1ξπ‘ƒξπ‘ƒβˆš2ξξξξπ›Όπ‘ƒπΆβ€²π΅π‘ƒβˆ’π‘„000𝑃0βˆ’6πœ–2√𝐼002𝐢𝑃00βˆ’π‘ƒ0𝐡′000βˆ’πœ–2𝐼⎀βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯⎦<0(3.37) and (3.24), (3.25), and (3.26) have solutions 𝑃>0, 𝑄>0, 𝛼, and π‘Œβˆˆπ‘π‘šΓ—π‘›, then system (2.1) can be locally (globally) robustly stabilized by 𝑃𝑒(𝑑)=π‘Œβˆ’1π‘₯(𝑑).(3.38)

Proof. It is derived by the same procedure as the proof of Theorem 3.6.

By the above discussion about stochastic systems with single delay (2.1), we further study robust stabilization for the following stochastic systems with multiple delays𝑑π‘₯(𝑑)=𝐴π‘₯(𝑑)+π‘žξ“π‘—=1𝐡𝑗π‘₯ξ€·π‘‘βˆ’πœπ‘—ξ€Έ+π‘žξ“π‘—=1𝐡1𝑗𝑒𝑗(𝑑)+𝐻0ξ€·ξ€·π‘₯(𝑑),π‘₯π‘‘βˆ’πœπ‘—ξ€Έ,𝑒𝑗+(𝑑)𝑑𝑑𝐢π‘₯(𝑑)+π‘žξ“π‘—=1𝐷𝑗π‘₯ξ€·π‘‘βˆ’πœπ‘—ξ€Έ+π‘žξ“π‘—=1𝐷1𝑗𝑒𝑗(𝑑)+𝐻1ξ€·ξ€·π‘₯(𝑑),π‘₯π‘‘βˆ’πœπ‘—ξ€Έ,𝑒𝑗π‘₯(𝑑)𝑑𝑀(𝑑),(𝑑)=(𝑑)∈𝐿2ξ€·πœ”,β„±0([],πΆβˆ’β„Ž,0,𝑅𝑛)ξ€Έ[],,π‘‘βˆˆβˆ’β„Ž,0(3.39) where πœπ‘—>0, 𝑗=1,…,π‘ž, denote the state delay; β„Ž=max{πœπ‘—,π‘—βˆˆ[1,π‘ž]}.

For system (3.39), the following memory state feedback control law is adopted:𝑒𝑗(𝑑)=𝐾𝑗1π‘₯(𝑑)+𝐾𝑗2π‘₯ξ€·π‘‘βˆ’πœπ‘—ξ€Έ,𝑗=1,…,π‘ž.(3.40) Applying control law (3.40) to system (3.39), the resulting closed-loop system is given by𝑑π‘₯(𝑑)=𝐴π‘₯(𝑑)+π‘žξ“π‘—=1𝐡π‘₯π‘‘βˆ’πœπ‘—ξ€Έ+𝐻0ξ€·ξ€·π‘₯(𝑑),π‘₯π‘‘βˆ’πœπ‘—ξ€Έ,𝐾𝑗1π‘₯(𝑑)+𝐾𝑗2π‘₯ξ€·π‘‘βˆ’πœπ‘—ξƒ­+𝑑𝑑𝐢π‘₯(𝑑)+π‘žξ“π‘—=1𝐷π‘₯π‘‘βˆ’πœπ‘—ξ€Έ+𝐻1ξ€·ξ€·π‘₯(𝑑),π‘₯π‘‘βˆ’πœπ‘—ξ€Έ,𝐾𝑗1π‘₯(𝑑)+𝐾𝑗2π‘₯ξ€·π‘‘βˆ’πœπ‘—ξƒ­π‘₯𝑑𝑀(𝑑),(𝑑)=(𝑑)∈𝐿2ξ€·πœ”,β„±0([],πΆβˆ’β„Ž,0,𝑅𝑛)ξ€Έ[],,π‘‘βˆˆβˆ’β„Ž,0(3.41) where βˆ‘π΄=𝐴+π‘žπ‘—=1𝐡1𝑗𝐾𝑗1, 𝐡=𝐡𝑗+𝐡1𝑗𝐾𝑗2, βˆ‘πΆ=𝐢+π‘žπ‘—=1𝐷1𝑗𝐾𝑗1, 𝐷=𝐷𝑗+𝐷1𝑗𝐾𝑗2.

By the same analysis as Theorem 3.2, we obtain the following theorem which gives a general sufficient condition for the robust stabilization of stochastic multiple time-delays system (3.39).

Theorem 3.8. If (3.1) holds, and 𝐾𝑗1, 𝐾𝑗2, 𝑃>0, and 𝑄>0 are the solutions of the following matrix inequality 𝑍0+𝑍1<0,(3.42) then system (3.39) can be locally robustly stabilized by 𝑒𝑗(𝑑)=𝐾𝑗1π‘₯(𝑑)+𝐾𝑗2π‘₯(π‘‘βˆ’πœπ‘—). Especially if 𝐔 is replaced by 𝐑𝑛, then system (3.39) can be globally robustly stabilized by the same controller.
In (3.42), 𝑍0 and 𝑍1 are defined by𝑍0=βŽ‘βŽ’βŽ’βŽ£π‘011𝑍012βˆ—π‘022⎀βŽ₯βŽ₯⎦,𝑍1=βŽ‘βŽ’βŽ’βŽ£π‘11100𝑍122⎀βŽ₯βŽ₯⎦,(3.43) where 𝑍011=𝑃𝐴+π‘žξ“π‘—=1𝐡1𝑗𝐾𝑗1ξƒͺ+𝐴+π‘žξ“π‘—=1𝐡1𝑗𝐾𝑗1ξƒͺξ…ž+𝑃+𝑄𝐢+π‘žξ“π‘—=1𝐷1𝑗𝐾𝑗1ξƒͺξ…žπ‘ƒξƒ©πΆ+π‘žξ“π‘—=1𝐷1𝑗𝐾𝑗1ξƒͺ,𝑍012=π‘ƒπ‘žξ“π‘—=1𝐡𝑗+𝐡1𝑗𝐾𝑗2ξ€Έ+𝐢+π‘žξ“π‘—=1𝐷1𝑗𝐾𝑗1ξƒͺξ…žπ‘ƒπ‘žξ“π‘—=1𝐷𝑗+𝐷1𝑗𝐾𝑗2ξ€Έ,𝑍022=ξƒ¬π‘žξ“π‘—=1𝐷𝑗+𝐷1𝑗𝐾𝑗2ξ€Έξƒ­ξ…žξƒ¬π‘žξ“π‘—=1𝐷𝑗+𝐷1𝑗𝐾𝑗2ξ€Έξƒ­π‘βˆ’π‘„,111‖‖‖‖=πœ–3+3‖𝐢‖+3π‘žξ“π‘—=1𝐷1π‘—β€–β€–β€–β€–β‹…β€–β€–β€–β€–π‘žξ“π‘—=1𝐾𝑗1β€–β€–β€–β€–+β€–β€–β€–β€–+3πœ–β€–π·β€–+πœ–π‘žξ“π‘—=1𝐷1π‘—β€–β€–β€–β€–β‹…β€–β€–β€–β€–π‘žξ“π‘—=1𝐾𝑗2β€–β€–β€–β€–ξƒͺ𝑍‖𝑃‖𝐼,122‖‖‖‖=πœ–3+‖𝐷‖+π‘žξ“π‘—=1𝐷1π‘—β€–β€–β€–β€–β‹…β€–β€–β€–β€–π‘žξ“π‘—=1𝐾𝑗2β€–β€–β€–β€–+β€–β€–β€–β€–+β€–πΆβ€–π‘žξ“π‘—=1𝐷1π‘—β€–β€–β€–β€–β‹…β€–β€–β€–β€–π‘žξ“π‘—=1𝐾𝑗1β€–β€–β€–β€–ξƒͺ+2πœ–β€–π‘ƒβ€–πΌ.(3.44)

Remark 3.9. From Theorem 3.7, some useful results can be easily derived for stochastic multiple time-delays systems (3.39), which are similar to the results obtained for stochastic single time-delay systems (2.1).

4. Numerical Example

Now, we present one example to illustrate the effectiveness of our developed result (Theorem 3.6) in testing the stabilization of nonlinear stochastic time-delay system (2.1).

In (2.1), take 𝐷=0, 𝐷1=0, and⎑⎒⎒⎣⎀βŽ₯βŽ₯⎦⎑⎒⎒⎣⎀βŽ₯βŽ₯⎦,𝐡𝐴=βˆ’5.002.23βˆ’1.562.15,𝐡=βˆ’0.240.891.22βˆ’0.761=⎑⎒⎒⎣⎀βŽ₯βŽ₯⎦⎑⎒⎒⎣⎀βŽ₯βŽ₯⎦,π»βˆ’2.254.48,𝐢=βˆ’0.05βˆ’0.150.15βˆ’0.100=βŽ‘βŽ’βŽ’βŽ£ξ€·sin𝑒(𝑑)π‘₯2ξ€Έπ‘₯(π‘‘βˆ’πœ)1ξ€·(𝑑)cos𝑒(𝑑)π‘₯1ξ€Έπ‘₯(π‘‘βˆ’πœ)2⎀βŽ₯βŽ₯⎦,𝐻(𝑑)1=βŽ‘βŽ’βŽ’βŽ£ξ‚€βˆ’ξ€·exp𝑒(𝑑)+π‘₯1(π‘‘βˆ’πœ)+π‘₯2(ξ€Έπ‘‘βˆ’πœ)2π‘₯2(ξ€·βˆ’ξ€·π‘’π‘‘)exp2(𝑑)π‘₯21π‘₯(π‘‘βˆ’πœ)ξ€Έξ€Έ1⎀βŽ₯βŽ₯⎦,(𝑑)πœ™(0)=108ξ…ž,𝜏=0.5.(4.1) Obviously, (2.1) holds for all π‘₯βˆˆπ‘π‘› with πœ–=1.

Case 1 (Memory State Feedback Stabilization). Substituting all the above data into (3.23) and then solving the LMIs (3.23), (3.24), (3.25), and (3.26) by LMIs Toolbox, we can obtain solutions ⎑⎒⎒⎣⎀βŽ₯βŽ₯βŽ¦ξ‚ƒξ‚„,𝐾𝑃=0.4625βˆ’0.0626βˆ’0.06260.3383>0,𝛼=0.9015,π‘Œ=βˆ’0.1377βˆ’0.66742=,⎑⎒⎒⎣⎀βŽ₯βŽ₯βŽ¦βˆ’0.23910.2149𝑄=0.11410.00520.00520.0974>0.(4.2) So by Theorem 3.6, system (2.1) can be globally robustly stabilized by 𝑃𝑒(𝑑)=π‘Œβˆ’1π‘₯(𝑑)+𝐾2π‘₯(π‘‘βˆ’πœ)=βˆ’0.5790π‘₯1(𝑑)βˆ’2.0795π‘₯2(𝑑)βˆ’0.2391π‘₯1(π‘‘βˆ’πœ)+0.2149π‘₯2(π‘‘βˆ’πœ).(4.3) The state trajectories of close-loop system (2.6) and control curve in memory state feedback case are illustrated as Figure 1, from which, we see that the closed-loop system (2.6) takes only one second to have been stable.

Case 2 (Memory-Less State Feedback Stabilization). Solving LMIs (3.37), (3.24), (3.25), and (3.26), we obtain ⎑⎒⎒⎣⎀βŽ₯βŽ₯βŽ¦ξ‚ƒξ‚„,⎑⎒⎒⎣⎀βŽ₯βŽ₯βŽ¦π‘ƒ=0.5609βˆ’0.1964βˆ’0.19640.4117>0,π‘Œ=0.0602βˆ’0.5168𝑄=0.09230.00170.00170.0790>0,𝛼=0.9243.(4.4) So by Theorem 3.7, system (2.1) can be globally robustly stabilized by 𝑃𝑒(𝑑)=π‘Œβˆ’1π‘₯(𝑑)=βˆ’0.4449π‘₯1(𝑑)βˆ’1.5770π‘₯2(𝑑).(4.5) The state trajectories of close-loop system (2.6) and control curve in memoryless state feedback case are illustrated as Figure 2, from which, it can be seen that the closed-loop system (2.6) takes 1.5 seconds to have been stable.
From the two simulation results, the time needed to stabilize system using memory state feedback controller is less than that using memory-less state feedback controller, which shows the advantage of memory state feedback control.

5. Conclusions

This paper has discussed memory state feedback stabilization of stochastic systems with time-delay and nonlinear uncertainties. Some sufficient conditions have been given for the existence of a memory state feedback stabilizing control law in terms of linear matrix inequalities, which have the advantage of easy computation. The corresponding results to stochastic single time-delay systems have been further extended to the stochastic multiple time-delays systems. The results obtained in this paper can be reduced to the corresponding results in memoryless state feedback case and may also be extended to other stochastic system model.

Acknowledgment

This work is supported by the National Natural Science Foundation of China under Grant 61074088, and the Starting Research Foundation of Shandong Polytechnic University under Grant 12045501. The authors thank the reviewers and editors for their very helpful comments and suggestions which have improved the presentation of this paper.