About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 365697, 18 pages
http://dx.doi.org/10.1155/2012/365697
Research Article

A Modified PSO Algorithm for Minimizing the Total Costs of Resources in MRCPSP

1Department of Industrial Engineering, Sharif University of Technology, Tehran 11365-8639, Iran
2Department of Industrial Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran

Received 6 September 2011; Revised 4 December 2011; Accepted 30 December 2011

Academic Editor: Yi-Chung Hu

Copyright © 2012 Mohammad Khalilzadeh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Demeulemeester and W. S. Herroelen, Project Scheduling, A Research Handbook, Kluwer Academic, Dordrecht, The Netherlands, 2001.
  2. M. Ranjbar, M. Khalilzadeh, F. Kianfar, and K. Etminani, “An optimal procedure for minimizing total weighted resource tardiness penalty costs in the resource-constrained project scheduling problem,” Computers and Industrial Engineering, vol. 62, no. 1, pp. 264–270, 2012. View at Publisher · View at Google Scholar
  3. R. Heilmann, “A branch-and-bound procedure for the multi-mode resource-constrained project scheduling problem with minimum and maximum time lags,” European Journal of Operational Research, vol. 144, no. 2, pp. 348–365, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  4. G. Zhu, J. F. Bard, and G. Yu, “A branch-and-cut procedure for the multimode resource-constrained project-scheduling problem,” INFORMS Journal on Computing, vol. 18, no. 3, pp. 377–390, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Zhang, C. M. Tam, and H. Li, “Multimode project scheduling based on particle swarm optimization,” Computer-Aided Civil and Infrastructure Engineering, vol. 21, no. 2, pp. 93–103, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Lova, P. Tormos, and F. Barber, “Multi-mode resource constrained project scheduling: scheduling schemes, priority rules and mode selection rules,” Inteligencia Artificial, vol. 10, no. 30, pp. 69–86, 2006. View at Scopus
  7. A. Lova, P. Tormos, M. Cervantes, and F. Barber, “An efficient hybrid genetic algorithm for scheduling projects with resource constraints and multiple execution modes,” International Journal of Production Economics, vol. 117, no. 2, pp. 302–316, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Jarboui, N. Damak, P. Siarry, and A. Rebai, “A combinatorial particle swarm optimization for solving multi-mode resource-constrained project scheduling problems,” Applied Mathematics and Computation, vol. 195, no. 1, pp. 299–308, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  9. M. Ranjbar, B. De Reyck, and F. Kianfar, “A hybrid scatter search for the discrete time/resource trade-off problem in project scheduling,” European Journal of Operational Research, vol. 193, no. 1, pp. 35–48, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  10. V. Van Peteghem and M. Vanhoucke, “A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem,” European Journal of Operational Research, vol. 201, no. 2, pp. 409–418, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  11. F. S. Kazemi and R. Tavakkoli-Moghaddam, “Solving a multi-objective multi-mode resource-constrained project scheduling problem with particle swarm optimization,” International Journal of Academic Research, vol. 3, no. 1, pp. 103–110, 2011.
  12. J. Błażewicz, J. K. Lenstra, and A. H. G. Rinnooy Kan, “Scheduling subject to resource constraints: classification and complexity,” Discrete Applied Mathematics, vol. 5, no. 1, pp. 11–24, 1983. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  13. P. Brucker, A. Drexel, R. Mohring, K. Neumann, and E. Pesch, “Resource-constrained project scheduling: notation, classification, models and methods,” European Journal of Operational Research, vol. 113, pp. 3–41, 1999. View at Zentralblatt MATH
  14. S. K. Tchomté and M. Gourgand, “Particle swarm optimization: a study of particle displacement for solving continuous and combinatorial optimization problems,” International Journal of Production Economics, vol. 121, no. 1, pp. 57–67, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948, Piscataway, NJ, USA, December 1995. View at Scopus
  16. Y. Shi and R. Eberhart, “Modified particle swarm optimizer,” in Proceedings of the IEEE International Conference on Evolutionary Computation (ICEC '98), pp. 69–73, Piscataway, NJ, USA, May 1998. View at Scopus
  17. Y. Shi and R. Eberhart, “Parameter selection in particle swarm optimization,” in Annual Conference Evolutionary Programming, San Diego, Calif, USA, 1998.
  18. C. Y. Tsai and S. W. Yeh, “A multiple objective particle swarm optimization approach for inventory classification,” International Journal of Production Economics, vol. 114, no. 2, pp. 656–666, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Liu, J. Tang, and J. Song, “Order-planning model and algorithm for manufacturing steel sheets,” International Journal of Production Economics, vol. 100, no. 1, pp. 30–43, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Shi and R. Eberhart, “Empirical study of particle swarm optimization,” in Proceedings of the IEEE Congress on Evolutionary Computation, pp. 945–1950, Piscataway, NJ, USA, 1999.
  21. M. Clerc, “Discrete particle swarm optimization,” in New Optimization Techniques in Engineering, G. C. Onwubolu and B. V. Babu, Eds., pp. 204–219, Springer, Berlin, Germany, 2004. View at Zentralblatt MATH
  22. Kennedy and R. C. Eberhart, “Discrete binary version of the particle swarm algorithm,” in Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, vol. 5, pp. 4104–4108, IEEE Computer Society, Washington, DC, USA, 1997.
  23. F. Glover and M. Laguna, “Tabu search,” in Handbook of Combinatorial Optimization, D.-Z. Du and P. M. Pardalos, Eds., vol. 3, pp. 621–757, Kluwer Academic, Boston, Mass, USA, 1998. View at Zentralblatt MATH
  24. A. Sprecher, S. Hartmann, and A. Drexl, “An exact algorithm for project scheduling with multiple modes,” OR Spektrum, vol. 19, no. 3, pp. 195–203, 1997. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  25. S. Hartmann and D. Briskorn, “A survey of variants and extensions of the resource-constrained project scheduling problem,” European Journal of Operational Research, vol. 207, no. 1, pp. 1–14, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  26. R. M. Chen, C. L. Wu, C. M. Wang, and S. T. Lo, “Using novel particle swarm optimization scheme to solve resource-constrained scheduling problem in PSPLIB,” Expert Systems with Applications, vol. 37, no. 3, pp. 1899–1910, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Kolisch and A. Sprecher, “PSPLIB—a project scheduling problem library,” European Journal of Operational Research, vol. 96, no. 1, pp. 205–216, 1997. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Kolisch, A. Sprecher, and A. Drexl, “Characterization and generation of a general class of resource-constrained project scheduling problems,” Management Science, vol. 41, pp. 693–1703, 1995. View at Zentralblatt MATH
  29. M. Khalilzadeh, F. Kianfar, and M. Ranjbar, “A Scatter Search Algorithm for RCPSP with discounted weighted earliness-tardiness costs,” Life Science Journal, vol. 8, no. 2, pp. 634–640, 2011.