About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 405870, 22 pages
http://dx.doi.org/10.1155/2012/405870
Research Article

The Orbital Dynamics of Synchronous Satellites: Irregular Motions in the 2 : 1 Resonance

1Departamento de Matemática, Universidade Estadual Paulista (UNESP), 12516-410 Guaratinguetá-SP, Brazil
2Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo (UNIFESP), 12231-280 São José dos Campos, SP, Brazil
3Departamento de Matemática, Instituto Tecnológico de Aeronáutica (ITA), 12228-900 São José dos Campos, SP, Brazil

Received 7 July 2011; Accepted 27 September 2011

Academic Editor: Silvia Maria Giuliatti Winter

Copyright © 2012 Jarbas Cordeiro Sampaio et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. B. Morando, “Orbites de resonance des satellites de 24h,” Bulletin of the American Astronomical Society, vol. 24, pp. 47–67, 1963.
  2. L. Blitzer, “Synchronous and resonant satellite orbits associated with equatorial ellipticity,” Journal of Advanced Robotic Systems, vol. 32, pp. 1016–1019, 1963.
  3. B. Garfinkel, “The disturbing function for an artificial satellite,” The Astronomical Journal, vol. 70, no. 9, pp. 688–704, 1965.
  4. B. Garfinkel, “Tesseral harmonic perturbations of an artificial satellite,” The Astronomical Journal, vol. 70, pp. 784–786, 1965. View at Publisher · View at Google Scholar
  5. B. Garfinkel, “Formal solution in the problem of small divisors,” The Astronomical Journal, vol. 71, pp. 657–669, 1966. View at Publisher · View at Google Scholar
  6. G. S. Gedeon and O. L. Dial, “Along-track oscillations of a satellite due to tesseral harmonics,” AIAA Journal, vol. 5, pp. 593–595, 1967. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  7. G. S. Gedeon, B. C. Douglas, and M. T. Palmiter, “Resonance effects on eccentric satellite orbits,” Journal of the Astronautical Sciences, vol. 14, pp. 147–157, 1967.
  8. G. S. Gedeon, “Tesseral resonance effects on satellite orbits,” Celestial Mechanics, vol. 1, pp. 167–189, 1969. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  9. M. T. Lane, “An analytical treatment of resonance effects on satellite orbits,” Celestial Mechanics, vol. 42, pp. 3–38, 1988.
  10. A. Jupp, “A solution of the ideal resonance problem for the case of libration,” The Astronomical Journal, vol. 74, pp. 35–43, 1969. View at Publisher · View at Google Scholar
  11. T. A. Ely and K. C. Howell, “Long-term evolution of artificial satellite orbits due to resonant tesseral harmonics,” Journal of the Astronautical Sciences, vol. 44, pp. 167–190, 1996.
  12. D. M. Sanckez, T. Yokoyama, P. I. O. Brasil, and R. R. Cordeiro, “Some initial conditions for disposed satellites of the systems GPS and galileo constellations,” Mathematical Problems in Engineering, vol. 2009, Article ID 510759, 22 pages, 2009. View at Publisher · View at Google Scholar
  13. L. D. D. Ferreira and R. Vilhena de Moraes, “GPS satellites orbits: resonance,” Mathematical Problems in Engineering, vol. 2009, Article ID 347835, 12 pages, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  14. J. C. Sampaio, R. Vilhena de Moraes, and S. S. Fernandes, “Artificial satellites dynamics: resonant effects,” in Proceedings of the 22nd International Symposium on Space Flight Dynamics, São José dos Campos, Brazil, 2011.
  15. A. G. S. Neto, Estudo de Órbitas Ressonantes no Movimento de Satélites Artificiais, Tese de Mestrado, ITA, 2006.
  16. J. P. Osorio, Perturbações de Órbitas de Satélites no Estudo do Campo Gravitacional Terrestre, Imprensa Portuguesa, Porto, Portugal, 1973.
  17. W. M. Kaula, Theory of Satellite Geodesy: Applications of Satellites to Geodesy, Blaisdel, Waltham, Mass, USA, 1966.
  18. A. E. Roy, Orbital Motion, Institute of Physics Publishing Bristol and Philadelphia, 3rd edition, 1988.
  19. P. H. C. N. Lima Jr., Sistemas Ressonantes a Altas Excentricidades no Movimento de Satélites Artificiais, Tese de Doutorado, Instituto Tecnológico de Aeronáutica, 1998.
  20. P. R. Grosso, Movimento Orbital de um Satélite Artificial em Ressonância 2:1, Tese de Mestrado, Instituto Tecnológico de Aeronáutica, 1989.
  21. J. K. S. Formiga and R. Vilhena de Moraes, “Dynamical systems: an integrable kernel for resonance effects,” Journal of Computational Interdisciplinary Sciences, vol. 1, no. 2, pp. 89–94, 2009.
  22. R. Vilhena de Moraes, K. T. Fitzgibbon, and M. Konemba, “Influence of the 2:1 resonance in the orbits of GPS satellites,” Advances in Space Research, vol. 16, no. 12, pp. 37–40, 1995. View at Publisher · View at Google Scholar
  23. F. Christiansen and H. H. Rugh, “Computing lyapunov spectra with continuous gram-schmidt orthonormalization,” Nonlinearity, vol. 10, no. 5, pp. 1063–1072, 1997. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  24. L. Qun-Hong and T. Jie-Yan, “Lyapunov exponent calculation of a two-degree-of-freedom vibro-impact system with symmetrical rigid stops,” Chinese Physics B, vol. 20, no. 4, Article ID 040505, 2011. View at Publisher · View at Google Scholar
  25. I. Shimada and T. Nagashima, “A numerical approach to ergodic problem of dissipative dynamical systems,” Progress of Theoretical Physics, vol. 61, no. 6, pp. 1605–1616, 1979. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  26. W. E. Wiesel, “Continuous time algorithm for Lyapunov exponents,” Physical Review E, vol. 47, no. 5, pp. 3686–3697, 1993. View at Publisher · View at Google Scholar