About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 409856, 11 pages
http://dx.doi.org/10.1155/2012/409856
Research Article

Modeling Transitions in Complex Systems by Multiplicative Effect of Temporal Patterns Extracted from Signal Flows

1Department of Electrical and Computer Engineering, University of West Florida, 11000 University Parkway, Pensacola, FL 32514, USA
2Faculty of Applied Sciences, Politechnica University, Hagi-Ghita 81, 060032 Bucharest, Romania

Received 2 December 2012; Accepted 10 December 2012

Academic Editor: Carlo Cattani

Copyright © 2012 Ezzat G. Bakhoum and Cristian Toma. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. G. Bakhoum and C. Toma, “Dynamical aspects of macroscopic and quantum transitions due to coherence function and time series events,” Mathematical Problems in Engineering, vol. 2010, Article ID 428903, 13 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Toma, “Practical test-functions generated by computer algorithms,” in Proceedings of the International Conference on Computational Science and Its Applications (ICCSA '05), vol. 3482 of Lecture Notes in Computer Science, pp. 576–584, May 2005. View at Scopus
  3. C. Cattani, “Harmonic wavelets towards the solution of nonlinear PDE,” Computers and Mathematics with Applications, vol. 50, no. 8-9, pp. 1191–1210, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  4. B. Lazar, A. Sterian, St. Pusca et al., “Simulating delayed pulses in organic materials,” in Proceedings of the Computational Science and Its Applications (ICCSA '06), vol. 3980 of Lecture Notes in Computer Science, pp. 779–785, 2006.
  5. F. Doboga, “Different structural patterns created by short range variations of internal parameters,” in Proceedings of the 7th international conference on Computational Science (ICCS '07), vol. 4488 of Lecture Notes in Computer Science, pp. 1060–1066, 2007.
  6. J. J. Rushchitsky, C. Cattani, and E. V. Terletskaya, “Wavelet analysis of the evolution of a solitary wave in a composite material,” International Applied Mechanics, vol. 40, no. 3, pp. 311–318, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Cattani, “Multiscale analysis of wave propagation in composite materials,” Mathematical Modelling and Analysis, vol. 8, no. 4, pp. 267–282, 2003. View at Zentralblatt MATH · View at MathSciNet
  8. E. G. Bakhoum and C. Toma, “Specific mathematical aspects of dynamics generated by coherence functions,” Mathematical Problems in Engineering, vol. 2011, Article ID 436198, 10 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. E. G. Bakhoum and C. Toma, “Mathematical transform of traveling-wave equations and phase aspects of quantum interaction,” Mathematical Problems in Engineering, vol. 2010, Article ID 695208, 15 pages, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  10. C. Cattani and A. Ciancio, “Hybrid two scales mathematical tools for active particles modelling complex systems with learning hiding dynamics,” Mathematical Models and Methods in Applied Sciences, vol. 17, no. 2, pp. 171–187, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  11. C. Cattani, A. Ciancio, and A. d'Onofrio, “Metamodeling the learning-hiding competition between tumours and the immune system: a kinematic approach,” Mathematical and Computer Modelling, vol. 52, no. 1-2, pp. 62–69, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  12. A. Ciancio, “An approximate evaluation of the phenomenological and state coefficients for visco-anelastic media with memory,” U.P.B. Scientific Bulletin A, vol. 73, no. 4, pp. 3–14, 2011. View at MathSciNet
  13. M. Li and W. Zhao, “Quantitatively investigating locally weak stationarity of modified multifractional Gaussian noise,” Physica A, vol. 391, no. 24, pp. 6268–6278, 2012.
  14. M. Li and W. Zhao, “Visiting power laws in cyber-physical networking systems,” Mathematical Problems in Engineering, vol. 2012, Article ID 302786, 13 pages, 2012.
  15. M. Li and W. Zhao, “Representation of a stochastic traffic bound,” IEEE Transactions on Parallel and Distributed Systems, vol. 21, no. 9, pp. 1368–1372, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. E. G. Bakhoum and C. Toma, “Relativistic short range phenomena and space-time aspects of pulse measurements,” Mathematical Problems in Engineering, vol. 2008, Article ID 410156, 20 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus