About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 429479, 14 pages
http://dx.doi.org/10.1155/2012/429479
Research Article

An Adaptive Remeshing Procedure for Proximity Maneuvering Spacecraft Formations

1Departament d’Informàtica i Matemàtica Aplicada, Universitat de Girona, C/Lluís Santaló s/n, 17071 Girona, Spain
2IEEC and Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain

Received 14 November 2011; Accepted 2 January 2012

Academic Editor: Antonio F. Bertachini A. Prado

Copyright © 2012 Laura Garcia-Taberner and Josep J. Masdemont. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. The TPF Science Working Group, The Terrestrial Planet Finder: A NASA Origins Program to Search for Habitable Planets, JPL Publication, 1999.
  2. The Science and Technology Team of Darwin and Alcatel Study Team, Darwin. The Infrared Space Interferometer. Concept and Feasibility Study Report, ESA-SCI 12, European Space Agency, 2000.
  3. K. C. Gendreau, N. White, S. Owens, W. Cash, A. Shipley, and M. Joy, “The MAXIM X-ray interferometry mission concept study,” in Proceedings of the 36th Liège International Astrophysics Colloquium, pp. 11–16, Liège, Belgium, July, 2001.
  4. A. N. Parmar, G. Hasinger, M. Arnaud, X. Barcons, D. Barret, and A. Blanchard, “XEUS—the X-ray evolving universe spectroscopy mission,” in X-Ray and Gamma-Ray Elescopes and Instruments for Astronomy, pp. 304–313, 2003.
  5. M. Farrar, M. Thein, and D. C. Folta, “A comparative analysis of control techniques for formation flying spacecraft in an earth/moon-sun L2-centered lissajous orbit,” AIAA Paper 2008-7358, 2008.
  6. A. Badawy and C. R. McInnes, “On-orbit assembly using superquadric potential fields,” Journal of Guidance, Control, and Dynamics, vol. 31, no. 1, pp. 30–43, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. P. K. C. Wang and F. Y. Hadaegh, “Minimum-fuel formation reconfiguration of multiple free-flying spacecraft,” Journal of the Astronautical Sciences, vol. 47, no. 1-2, pp. 77–102, 1999. View at Scopus
  8. C. Y. Xia, P. K. C. Wang, and F. Y. Hadaegh, “Optimal formation reconfiguration of multiple spacecraft with docking and undocking capability,” Journal of Guidance, Control, and Dynamics, vol. 30, no. 3, pp. 694–702, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Garcia-Taberner and J. J. Masdemont, “Maneuvering spacecraft formations using a dynamically adapted finite element methodology,” Journal of Guidance, Control, and Dynamics, vol. 32, no. 5, pp. 1585–1597, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Garcia-Taberner, Proximity maneuvering of libration point orbit formations using adapted finite element methods, Ph.D. dissertation, Universitat Politècnica de Catalunya, Barcelona, Spain, 2010.
  11. L. Garcia-Taberner and J. J. Masdemont, “FEFF methodology for spacecraft formations reconfiguration in the vicinity of libration points,” Acta Astronautica, vol. 67, no. 7-8, pp. 810–817, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Vasile, “Finite elements in time: a direct transcription method for optimal control problems,” AIAA Paper 2010-8275, 2010.
  13. L.-Y. Li, P. Bettess, J. W. Bull, T. Bond, and I. Applegarth, “Theoretical formulations for adaptive finite element computations,” Communications in Numerical Methods in Engineering, vol. 11, no. 10, pp. 857–868, 1995. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet