About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 437927, 14 pages
http://dx.doi.org/10.1155/2012/437927
Research Article

Finite-SNR Diversity-Multiplexing Tradeoff for Cooperative Transmissions with Opportunistic Network Coding

Information Security Center, Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876, China

Received 1 October 2012; Accepted 29 November 2012

Academic Editor: Ming Li

Copyright © 2012 Guoyou Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity—part I: system description,” IEEE Transactions on Communications, vol. 51, no. 11, pp. 1927–1938, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity in wireless networks: efficient protocols and outage behavior,” IEEE Transactions on Information Theory, vol. 50, no. 12, pp. 3062–3080, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Kramer, I. Marić, and R. D. Yates, “Cooperative communications,” Foundations and Trends in Networking, vol. 1, no. 3-4, pp. 271–425, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Zheng and D. N. C. Tse, “Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels,” IEEE Transactions on Information Theory, vol. 49, no. 5, pp. 1073–1096, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  5. K. Azarian, H. El Gamal, and P. Schniter, “On the achievable diversity-multiplexing tradeoff in half-duplex cooperative channels,” IEEE Transactions on Information Theory, vol. 51, no. 12, pp. 4152–4172, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Bletsas, A. Khisti, D. P. Reed, and A. Lippman, “A simple cooperative diversity method based on network path selection,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 3, pp. 659–672, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Loyka and G. Levin, “Diversity-multiplexing tradeoff in the low-SNR regime,” IEEE Communications Letters, vol. 15, no. 5, pp. 542–544, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Narasimhan, “Finite-SNR diversity-multiplexing tradeoff for correlated Rayleigh and Rician MIMO channels,” IEEE Transactions on Information Theory, vol. 52, no. 9, pp. 3965–3979, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Stauffer, O. Oyman, R. Narasimhan, and A. Paulraj, “Finite-SNR diversity-multiplexing tradeoffs in fading relay channels,” IEEE Journal on Selected Areas in Communications, vol. 25, no. 2, pp. 245–257, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Liu, P. Dharmawansa, M. R. McKay, and K. B. Letaief, “Finite-SNR diversity-multiplexing trade-off of dual hop multiple-relay channels,” IEEE Transaction on Communications, vol. 60, no. 5, pp. 1451–1463, 2012. View at Publisher · View at Google Scholar
  11. R. Ahlswede, N. Cai, S. Y. Li, and R. Yeung, “Network information flow,” IEEE Transactions on Information Theory, vol. 46, no. 4, pp. 1204–1216, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  12. S. Katti, H. S. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft, “XORs in the air: practical wireless network coding,” in Proceedings of the ACM SIGCOMM, pp. 243–254, 2006.
  13. S. Sharma, Y. Shi, J. Liu, Y. T. Hou, and S. Kompella, “Is network coding always good for cooperative communications?” in Proceedings of the IEEE INFOCOM 2010, pp. 1–9, San Diego, Calif, USA, March 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Chen, S. Kishore, and J. Li, “Wireless diversity through network coding,” in Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC'06), vol. 3, pp. 1681–1686, April 2006. View at Scopus
  15. C. Peng, Q. Zhang, M. Zhao, Y. Yao, and W. Jia, “On the performance analysis of network-coded cooperation in wireless networks,” IEEE Transactions on Wireless Communications, vol. 7, no. 8, pp. 3090–3097, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. Z. Yi, M. Ju, and I. M. Kim, “Outage probability and optimum power allocation for analog network coding,” IEEE Transactions on Wireless Communications, vol. 10, no. 2, pp. 407–412, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. I. Maric, A. Goldsmith, and M. Medard, “Analog network coding in the high-SNR regime,” in Proceedings of the IEEE Wireless Network Coding Conference (WiNC'2010), pp. 1–6, Bostn, Mass, USA. View at Publisher · View at Google Scholar
  18. M. Li, Y. Q. Chen, J. Y. Li, and W. Zhao, “Hölder scales of sea level,” Mathematical Problems in Engineering, vol. 2013, Article ID 863707, 2013. View at Publisher · View at Google Scholar
  19. M. Li and W. Zhao, “Quantitatively investigating the locally weak stationarity of modified multifractional Gaussian noise,” Physica A, vol. 391, no. 24, pp. 6268–6278, 2012. View at Publisher · View at Google Scholar
  20. M. Li and W. Zhao, “On 1/f noise,” Mathematical Problems in Engineering, vol. 2013, Article ID 673648, 2013. View at Publisher · View at Google Scholar
  21. R. Narasimhan, “Finite-SNR diversity performance of rate-adaptive MIMO systems,” in Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM'05), pp. 1461–1465, December 2005. View at Publisher · View at Google Scholar · View at Scopus