About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 467629, 17 pages
http://dx.doi.org/10.1155/2012/467629
Research Article

Stability of Teleoperation Systems for Time-Varying Delays by Neutral LMI Techniques

1Higher Technical School of Industrial Engineering, University of Vigo, 36310 Vigo, Spain
2Higher Technical School of Computer Engineering, University of Vigo, 32004 Orense, Spain

Received 26 June 2012; Revised 18 October 2012; Accepted 22 October 2012

Academic Editor: Alexander Pogromsky

Copyright © 2012 Emma Delgado et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. A. Lawrence, “Stability and transparency in bilateral teleoperation,” IEEE Transactions on Robotics and Automation, vol. 9, no. 5, pp. 624–637, 1993. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Arcara and C. Melchiorri, “Control schemes for teleoperation with time delay: a comparative study,” Robotics and Autonomous Systems, vol. 38, no. 1, pp. 49–64, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  3. R. J. Anderson and M. W. Spong, “Bilateral control of teleoperators with time delay,” IEEE Transactions on Automatic Control, vol. 34, no. 5, pp. 494–501, 1989. View at Publisher · View at Google Scholar
  4. K. Hashtrudi-Zaad and S. E. Salcudean, “Transparency in time-delayed systems and the effect of local force feedback for transparent teleoperation,” IEEE Transactions on Robotics and Automation, vol. 18, no. 1, pp. 108–114, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Niemeyer and J. J. E. Slotine, “Stable adaptive teleoperation,” IEEE Journal of Oceanic Engineering, vol. 16, no. 1, pp. 152–162, 1991. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Delgado and A. Barreiro, “Stability of teleoperation systems for time-varying delays by LMI techniques,” in Proceedings of the European Control Conference (ECC '07), pp. 4214–4221, Kos, Greece, July 2007.
  7. E. Delgado, M. Díaz-Cacho, and A. Barreiro, “Stability of teleoperation systems under time-varying delays by using Lyapunov-Krasovskii techniques,” in Proceedings of the 18th International Federation of Automatic Control World Congress, vol. 18, part I, Milan, Italy, August 2011. View at Publisher · View at Google Scholar
  8. M. Díaz-Cacho, A. Fernández, M. García, and A. Barreiro, “Internet emulation system for UDP-based teleoperation,” in Proceedings of the Mediterranean Conference on Control and Automation (MCA '08), pp. 1417–1422, Corsica, France, June 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Tian, D. Yashiro, and K. Ohnishi, “Haptic transmission by weighting control under time-varying communication delay,” IET Control Theory & Applications, vol. 6, no. 3, pp. 420–429, 2012. View at Publisher · View at Google Scholar
  10. P. F. Hokayem and M. W. Spong, “Bilateral teleoperation: an historical survey,” Automatica, vol. 42, no. 12, pp. 2035–2057, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  11. N. Chopra, M. W. Spong, and R. Lozano, “Synchronization of bilateral teleoperators with time delay,” Automatica, vol. 44, no. 8, pp. 2142–2148, 2008. View at Publisher · View at Google Scholar
  12. A. F. Villaverde, A. B. Blas, J. Carrasco, and A. B. Torrico, “Reset control for passive bilateral teleoperation,” IEEE Transactions on Industrial Electronics, vol. 58, no. 7, pp. 3037–3045, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Ware and Y. J. Pan, “Realisation of a bilaterally teleoperated robotic vehicle platform with passivity control,” IET Control Theory and Applications, vol. 5, no. 8, pp. 952–962, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Nuño, L. Basañez, and R. Ortega, “Passivity-based control for bilateral teleoperation: a tutorial,” Automatica, vol. 47, no. 3, pp. 485–495, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  15. S. Dashkovskiy, M. Kosmykov, and F. R. Wirth, “A small-gain condition for interconnections of ISS systems with mixed ISS characterizations,” IEEE Transactions on Automatic Control, vol. 56, no. 6, pp. 1247–1258, 2011. View at Publisher · View at Google Scholar
  16. I. G. Polushin and S. N. Dashkovskiy, “A small-gain framework for networked cooperative teleoperation,” in Proceedings of the 8th IFAC Symposium on Nonlinear Control Systems (NOLCOS '10), pp. 90–95, Bologna, Italy, September 2010.
  17. E. Delgado, M. Díaz-Cacho, D. Bustelo, and A. Barreiro, “Generic approach to stability under time-varying delay in teleoperation. Application to the position-error control of a gantry crane,” IEEE/ASME Transactions on Mechatronics, vol. PP, no. 99, pp. 1–11, 2012. View at Publisher · View at Google Scholar
  18. S.-I. Niculescu, Delay Effects on Stability, Lecture Notes in Control and Information Sciences, Springer, New York, NY, USA, 2001.
  19. D. Ivănescu, S.-I. Niculescu, L. Dugard, J.-M. Dion, and E. I. Verriest, “On delay-dependent stability for linear neutral systems,” Automatica, vol. 39, no. 2, pp. 255–261, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  20. Z. H. Wang, “Numerical stability test of neutral delay differential equations,” Mathematical Problems in Engineering, vol. 2008, Article ID 698043, 10 pages, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  21. Z. Zhao, W. Wang, and B. Yang, “Delay and its time-derivative dependent robust stability of neutral control system,” Applied Mathematics and Computation, vol. 187, no. 2, pp. 1326–1332, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  22. A. Barreiro and E. Delgado, “Stability of teleoperation systems by delay-dependent neutral LMI techniques,” in Proceedings of the 32nd Annual Conference on IEEE Industrial Electronics (IECON '06), pp. 342–347, November 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. J. K. Hale and S. M. Verduyn Lunel, “Introduction to functional differential equations,” in Applied Mathematical Sciences, vol. 99, Springer, New York, NY, USA, 1993. View at Zentralblatt MATH