About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 478931, 22 pages
http://dx.doi.org/10.1155/2012/478931
Research Article

Sparse Signal Recovery via ECME Thresholding Pursuits

1School of Computer Science and Telecommunication Engineering, Jiangsu University, Zhenjiang 212013, China
2School of Information Science and Technology, Sun Yat-Sen University, Guangzhou 510006, China

Received 17 February 2012; Revised 24 April 2012; Accepted 8 May 2012

Academic Editor: Jung-Fa Tsai

Copyright © 2012 Heping Song and Guoli Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The emerging theory of compressive sensing (CS) provides a new sparse signal processing paradigm for reconstructing sparse signals from the undersampled linear measurements. Recently, numerous algorithms have been developed to solve convex optimization problems for CS sparse signal recovery. However, in some certain circumstances, greedy algorithms exhibit superior performance than convex methods. This paper is a followup to the recent paper of Wang and Yin (2010), who refine BP reconstructions via iterative support detection (ISD). The heuristic idea of ISD was applied to greedy algorithms. We developed two approaches for accelerating the ECME iteration. The described algorithms, named ECME thresholding pursuits (EMTP), introduced two greedy strategies that each iteration detects a support set I by thresholding the result of the ECME iteration and estimates the reconstructed signal by solving a truncated least-squares problem on the support set I. Two effective support detection strategies are devised for the sparse signals with components having a fast decaying distribution of nonzero components. The experimental studies are presented to demonstrate that EMTP offers an appealing alternative to state-of-the-art algorithms for sparse signal recovery.