About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 478931, 22 pages
http://dx.doi.org/10.1155/2012/478931
Research Article

Sparse Signal Recovery via ECME Thresholding Pursuits

1School of Computer Science and Telecommunication Engineering, Jiangsu University, Zhenjiang 212013, China
2School of Information Science and Technology, Sun Yat-Sen University, Guangzhou 510006, China

Received 17 February 2012; Revised 24 April 2012; Accepted 8 May 2012

Academic Editor: Jung-Fa Tsai

Copyright © 2012 Heping Song and Guoli Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Elad, M. A. T. Figueiredo, and Y. Ma, “On the role of sparse and redundant representations in image processing,” Proceedings of the IEEE, vol. 98, no. 6, pp. 972–982, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. M. J. Fadili, J. L. Starck, J. Bobin, and Y. Moudden, “Image decomposition and separation using sparse representations: an overview,” Proceedings of the IEEE, vol. 98, no. 6, pp. 983–994, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. M. D. Plumbley, T. Blumensath, L. Daudet, R. Gribonval, and M. E. Davies, “Sparse representations in audio and music: from coding to source separation,” Proceedings of the IEEE, vol. 98, no. 6, pp. 995–1005, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. L. C. Potter, E. Ertin, J. T. Parker, and M. Çetin, “Sparsity and compressed sensing in radar imaging,” Proceedings of the IEEE, vol. 98, no. 6, pp. 1006–1020, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. S. Huang, and S. Yan, “Sparse representation for computer vision and pattern recognition,” Proceedings of the IEEE, vol. 98, no. 6, pp. 1031–1044, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Y. Yang, M. Gastpar, R. Bajcsy, and S. S. Sastry, “Distributed sensor perception via sparse representation,” Proceedings of the IEEE, vol. 98, no. 6, pp. 1077–1088, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Robucci, J. D. Gray, L. K. Chiu, J. Romberg, and P. Hasler, “Compressive sensing on a CMOS separable-transform image sensor,” Proceedings of the IEEE, vol. 98, no. 6, pp. 1089–1101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Transactions on Information Theory, vol. 52, no. 2, pp. 489–509, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  9. D. L. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory, vol. 52, no. 4, pp. 1289–1306, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  10. S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,” SIAM Review, vol. 43, no. 1, pp. 129–159, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  11. A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse solutions of systems of equations to sparse modeling of signals and images,” SIAM Review, vol. 51, no. 1, pp. 34–81, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  12. J. A. Tropp and S. J. Wright, “Computational methods for sparse solution of linear inverse problems,” Proceedings of the IEEE, vol. 98, no. 6, pp. 948–958, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. B. K. Natarajan, “Sparse approximate solutions to linear systems,” SIAM Journal on Computing, vol. 24, no. 2, pp. 227–234, 1995. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  14. R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal Statistical Society, Series B, vol. 58, no. 1, pp. 267–288, 1996. View at Zentralblatt MATH
  15. B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle regression,” The Annals of Statistics, vol. 32, no. 2, pp. 407–499, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  16. M. E. Tipping, “Sparse Bayesian learning and the relevance vector machine,” Journal of Machine Learning Research, vol. 1, no. 3, pp. 211–244, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  17. D. P. Wipf and B. D. Rao, “Sparse Bayesian learning for basis selection,” IEEE Transactions on Signal Processing, vol. 52, no. 8, pp. 2153–2164, 2004. View at Publisher · View at Google Scholar
  18. S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing,” IEEE Transactions on Signal Processing, vol. 56, no. 6, pp. 2346–2356, 2008. View at Publisher · View at Google Scholar
  19. S. D. Babacan, R. Molina, and A. K. Katsaggelos, “Bayesian compressive sensing using Laplace priors,” IEEE Transactions on Image Processing, vol. 19, no. 1, pp. 53–63, 2010. View at Publisher · View at Google Scholar
  20. S. G. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries,” IEEE Transactions on Signal Processing, vol. 41, no. 12, pp. 3397–3415, 1993. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition,” in Proceedings of the 27th Asilomar Conference on Signals, Systems & Computers, vol. 1, pp. 40–44, Pacific Grove, Calif , USA, November 1993. View at Scopus
  22. J. A. Tropp, “Greed is good: algorithmic results for sparse approximation,” IEEE Transactions on Information Theory, vol. 50, no. 10, pp. 2231–2242, 2004. View at Publisher · View at Google Scholar
  23. J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements via orthogonal matching pursuit,” IEEE Transactions on Information Theory, vol. 53, no. 12, pp. 4655–4666, 2007. View at Publisher · View at Google Scholar
  24. W. Dai and O. Milenkovic, “Subspace pursuit for compressive sensing signal reconstruction,” IEEE Transactions on Information Theory, vol. 55, no. 5, pp. 2230–2249, 2009. View at Publisher · View at Google Scholar
  25. D. Needell and J. A. Tropp, “CoSaMP: iterative signal recovery from incomplete and inaccurate samples,” Applied and Computational Harmonic Analysis, vol. 26, no. 3, pp. 301–321, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  26. I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,” Communications on Pure and Applied Mathematics, vol. 57, no. 11, pp. 1413–1457, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  27. T. Blumensath and M. E. Davies, “Iterative hard thresholding for compressed sensing,” Applied and Computational Harmonic Analysis, vol. 27, no. 3, pp. 265–274, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  28. K. Qiu and A. Dogandzic, “Double overrelaxation thresholding methods for sparse signal reconstruction,” in Proceedings of the 44th Annual Conference on Information Sciences and Systems (CISS '10), Princeton, NJ, USA, March 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Qiu and A. Dogandzic, “Sparse signal reconstruction via ECME hard thresholding,” IEEE Transactions on Signal Processing, vol. 60, no. 9, pp. 4551–4569, 2012.
  30. Y. Wang and W. Yin, “Sparse signal reconstruction via iterative support detection,” SIAM Journal on Imaging Sciences, vol. 3, no. 3, pp. 462–491, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  31. A. Maleki and D. L. Donoho, “Optimally tuned iterative reconstruction algorithms for compressed sensing,” IEEE Journal on Selected Topics in Signal Processing, vol. 4, no. 2, pp. 330–341, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Blumensath and M. E. Davies, “Gradient pursuits,” IEEE Transactions on Signal Processing, vol. 56, no. 6, pp. 2370–2382, 2008. View at Publisher · View at Google Scholar
  33. B. Sturm, “A study on sparse vector distributions and recovery from compressed sensing,” http://arxiv.org/abs/1103.6246.
  34. X. Zhang, J. Wen, Y. Han, and J. Villasenor, “An improved compressive sensing reconstruction algorithm using linear/non-linear mapping,” in Proceedings of the Information Theory and Applications Workshop (ITA '11), pp. 146–152, San Diego, Calif, USA, February 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. X. Zhang, Z. Chen, J. Wen, J. Ma, Y. Han, and J. Villasenor, “A compressive sensing reconstruction algorithm for trinary and binary sparse signals using pre-mapping,” in Proceedings of the Data Compression Conference (DCC '11), pp. 203–212, Snowbird, Utah, USA, March 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. V. Stodden, L. Carlin, D. Donoho et al., “SparseLab: seeking sparse solutions to linear systems of equations,” Tech. Rep., Stanford University, 2011.