About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 495019, 18 pages
http://dx.doi.org/10.1155/2012/495019
Research Article

Finite Element Modelling Tuned on Experimental Testing for the Structural Health Assessment of an Ancient Masonry Arch Bridge

DICAM Department, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy

Received 22 August 2012; Accepted 30 August 2012

Academic Editor: Ivan Bartoli

Copyright © 2012 G. Castellazzi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Brencich and D. Sabia, “Experimental identification of a multi-span masonry bridge: the Tanaro Bridge,” Construction and Building Materials, vol. 22, no. 10, pp. 2087–2099, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Brencich and U. De Francesco, “Assessment of multispan masonry arch bridges—I: simplified approach,” Journal of Bridge Engineering, vol. 9, no. 6, pp. 582–590, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. D. M. Armstrong, A. Sibbald, C. A. Fairfield, and M. C. Forde, “Modal analysis for masonry arch bridge spandrell wall separation identification,” NDT and E International, vol. 28, no. 6, pp. 377–386, 1995. View at Scopus
  4. C. Melbourne, T. G. Hughes, M. J. Blackler, and M. Gilbert, “A review of the UK masonry arch assessment methods. discussion,” Proceedings of the ICE, vol. 134, no. 3, pp. 287–289, 1999.
  5. A. Thavalingam, N. Bicanic, J. I. Robinson, and D. A. Ponniah, “Computational framework for discontinuous modelling of masonry arch bridges,” Computers and Structures, vol. 79, no. 19, pp. 1821–1830, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Mazzotti, S. deMiranda, G. Castellazzi, and F. Carrea, “Structural assessment of the railway masonry arch bridge crossing the Reno river in Bologna,” in Proceedings of the 6th International Conference on Bridge Maintenance, Safety and Management,, pp. 1078–1085, 2012.
  7. P. J. Fanning and T. E. Boothby, “Three-dimensional modelling and full-scale testing of stone arch bridges,” Computers and Structures, vol. 79, no. 29-30, pp. 2645–2662, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. P. J. Fanning, L. Sobczak, T. E. Boothby, and V. Salomoni, “Load testing and model simulations for a stone arch bridge,” Bridge Structures, vol. 1, no. 4, pp. 367–378, 2005.
  9. A. Bayraktar, A. C. Altuniik, F. Birinci, B. Sevim, and T. Türker, “Finite-element analysis and vibration testing of a two-span masonry arch bridge,” Journal of Performance of Constructed Facilities, vol. 24, no. 1, pp. 46–52, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Sevim, A. Bayraktar, A. C. Altuniik, S. Atamtürktür, and F. Birinci, “Finite element model calibration effects on the earthquake response of masonry arch bridges,” Finite Elements in Analysis and Design, vol. 47, no. 7, pp. 621–634, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. Hibbitt Inc., Abaqus Theory Manual, Karlsson & Sorensen, 1998.
  12. G. Castellazzi, “On the performances of parametric finite elements when geometry distortions occur,” Finite Elements in Analysis and Design, vol. 47, no. 12, pp. 1306–1314.
  13. R. J. Allemang and D. L. Brown, “A unified matrix polynomial approach to modal identification,” Journal of Sound and Vibration, vol. 211, no. 3, pp. 301–318, 1998. View at Scopus
  14. D. J. Ewins, Modal Testing: Theory, Practice and Application, Wiley, 2nd edition, 2001.
  15. E. Sassoni and C. Mazzotti, “The use of small diameter cores for assessing the compressive strength of clay brick masonries,” Journal of Cultural Heritage. In press.
  16. Eurocode 6, “Part 1-1, General Rules for reinforced and unreinforced masonry, including lateral loading,” 2009.
  17. C. Gentilini, L. Govoni, S. de Miranda, and G. Gottardi, “Three-dimensional numerical modelling of falling rock protection barriers,” Computers and Geotechnics, vol. 44, pp. 58–72, 2012.
  18. L. Govoni, S. de Miranda, C. Gentilini, G. Gottardi, and F. Ubertini, “Modelling of falling rock protection barriers,” International Journal of Physical Modelling in Geotechnics, vol. 11, pp. 126–137, 2011.
  19. NTC 2008, “Norme Tecniche per le Costruzioni,” D.M. 14/01/08, 2008.
  20. G. Castellazzi, S. de Miranda, and F. Ubertini, “Adaptivity based on the recovery by compatibility in patches,” Finite Elements in Analysis and Design, vol. 46, no. 5, pp. 379–390, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. S. de Miranda, L. Patruno, and F. Ubertini, “Transverse stress profiles reconstruction for finite element analysis of laminated plates,” Composite Structures, vol. 94, no. 9, pp. 2706–2715, 2012.
  22. C. Carloni, K. V. Subramaniam, M. Savoia, and C. Mazzotti, “Experimental determination of FRP-concrete cohesive interface properties under fatigue loading,” Composite Structures, vol. 94, no. 4, pp. 1288–1296, 2012.