About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 498690, 14 pages
http://dx.doi.org/10.1155/2012/498690
Research Article

Particle Swarm Optimization Algorithm Coupled with Finite Element Limit Equilibrium Method for Geotechnical Practices

1State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
2Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China

Received 5 October 2012; Accepted 10 November 2012

Academic Editor: Fei Kang

Copyright © 2012 Hongjun Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. M. Cheng, “Location of critical failure surface and some further studies on slope stability analysis,” Computers and Geotechnics, vol. 30, no. 3, pp. 255–267, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. Z. Teng, J. He, A. J. Degnan et al., “Critical mechanical conditions around neovessels in carotid atherosclerotic plaque may promote intraplaque hemorrhage,” Atherosclerosis, vol. 223, no. 2, pp. 321–326, 2012.
  3. S. Chen, Y. Wang, and C. Cattani, “Key issues in modeling of complex 3D structures from video sequences,” Mathematical Problems in Engineering, vol. 2012, Article ID 856523, 17 pages, 2012. View at Publisher · View at Google Scholar
  4. S. Y. Chen, J. Zhang, Q. Guan, and S. Liu, “Detection and amendment of shape distortions based on moment invariants for active shape models,” IET Image Processing, vol. 5, no. 3, pp. 273–285, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Kang, J. Li, and Q. Xu, “Damage detection based on improved particle swarm optimization using vibration data,” Applied Soft Computing, vol. 12, no. 8, pp. 2329–2335, 2012. View at Publisher · View at Google Scholar
  6. F. Kang, J. Li, and Z. Ma, “An artificial bee colony algorithm for locating the critical slip surface in slope stability analysis,” Engineering Optimization. In press. View at Publisher · View at Google Scholar
  7. O. C. Zienkiewicz, C. Humpheson, and R. W. Lewis, “Associated and non-associated visco-plasticity and plasticity in soil mechanics,” Geotechnique, vol. 25, no. 4, pp. 671–689, 1975. View at Scopus
  8. D. V. Griffiths and P. A. Lane, “Slope stability analysis by finite elements,” Geotechnique, vol. 49, no. 3, pp. 387–403, 1999. View at Scopus
  9. Y. M. Cheng, T. Lansivaara, and W. B. Wei, “Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods,” Computers and Geotechnics, vol. 34, no. 3, pp. 137–150, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. J.-Z. Zou, D. J. Williams, and W.-L. Xiong, “Search for critical slip surfaces based on finite element method,” Canadian Geotechnical Journal, vol. 32, no. 2, pp. 233–246, 1995. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Y. Kim and S. R. Lee, “An improved search strategy for the critical slip surface using finite element stress fields,” Computers and Geotechnics, vol. 21, no. 4, pp. 295–313, 1997. View at Publisher · View at Google Scholar · View at Scopus
  12. H. T. V. Pham and D. G. Fredlund, “The application of dynamic programming to slope stability analysis,” Canadian Geotechnical Journal, vol. 40, no. 4, pp. 830–847, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Yamagami and Y. Ueta, “Search for critical slip lines in finite element stress fields by dynamic programming,” in Proceedings of the 6th International Conference on Numerical methods in Geomechanics, pp. 1347–1352, Innsbruck, Austria, 1988.
  14. L. T. Shao, H. X. Tang, and G. C. Han, “Finite element method for slope stability analysis with its applications,” Chinese Journal of Computational Mechanics, vol. 18, no. 1, pp. 81–87, 2001. View at Scopus
  15. Y. M. Cheng, L. Li, S.-C. Chi, and W. B. Wei, “Particle swarm optimization algorithm for the location of the critical non-circular failure surface in two-dimensional slope stability analysis,” Computers and Geotechnics, vol. 34, no. 2, pp. 92–103, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. V. R. Greco, “Efficient Monte Carlo technique for locating critical slip surface,” Journal of Geotechnical Engineering, vol. 122, no. 7, pp. 517–525, 1996. View at Publisher · View at Google Scholar · View at Scopus
  17. A. I. H. Malkawi, W. F. Hassan, and S. K. Sarma, “Global search method for locating general slip surface using Monte Carlo techniques,” Journal of Geotechnical and Geoenvironmental Engineering, vol. 127, no. 8, pp. 688–698, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Chen, Y. Zheng, C. Cattani, and W. Wang, “Modeling of biological intelligence for SCM system optimization,” Computational and Mathematical Methods in Medicine, vol. 2012, Article ID 769702, 10 pages, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  19. P. Lu, S. Chen, and Y. Zheng, “Artificial intelligence in civil engineering,” Mathematical Problems in Engineering, vol. 2013, Article ID 145974, 20 pages, 2013. View at Publisher · View at Google Scholar
  20. Z. Jie, The research of some application problems in finite element method for slope stability analysis [Ph.D. thesis], Dalian University of Technology, Dalian, China, 2006.
  21. D. V. Griffiths, “Computation of bearing capacity factors using finite elements,” Geotechnique, vol. 32, no. 3, pp. 195–202, 1982. View at Scopus