About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 568796, 10 pages
Research Article

Radial Basis Functional Link Network and Hamilton Jacobi Issacs for Force/Position Control in Robotic Manipulation

1Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
2Key Lab of Industrial Computer Control Engineering of Hebei Province, Yanshan University, Qinhuangdao 066004, China

Received 14 April 2011; Revised 18 May 2011; Accepted 29 May 2011

Academic Editor: Shengyong Chen

Copyright © 2012 Shuhuan Wen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. H. Raibert and J. J. Craig, “Hybrid position/force control of manipulators,” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, vol. 103, no. 2, pp. 126–133, 1981. View at Scopus
  2. S. Y. Chen and Y. F. Li, “Determination of stripe edge blurring for depth sensing,” IEEE Sensors Journal, vol. 11, no. 2, pp. 389–390, 2011.
  3. S. Y. Chen, Y. F. Li, and J. Zhang, “Vision processing for realtime 3-D data acquisition based on coded structured light,” IEEE Transactions on Image Processing, vol. 17, no. 2, pp. 167–176, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at MathSciNet
  4. S. Y. Chen, H. Tong, Z. Wang, S. Liu, M. Li, and B. Zhang, “Improved generalized belief propagation for vision processing,” Mathematical Problems in Engineering, vol. 2011, Article ID 416963, 12 pages, 2011. View at Zentralblatt MATH
  5. C.-H. Kao, C.-F. Hsu, C.-H. Wang, and H. S. Don, “Chaos synchronization using adaptive dynamic neural network controller with variable learning rates,” Mathematical Problems in Engineering, vol. 2011, Article ID 701671, 20 pages, 2011.
  6. L. A. Mozelli and R. M. Palhares, “Less conservative H fuzzy control for discrete-time takagi-sugeno systems,” Mathematical Problems in Engineering, vol. 2011, Article ID 361640, 21 pages, 2011.
  7. M. M. Belhaouane, M. F. Ghariani, H. Belkhiria Ayadi, and N. B. Braiek, “Improved results on robust stability analysis and stabilization for a class of uncertain nonlinear systems,” Mathematical Problems in Engineering, vol. 2010, Article ID 724563, 24 pages, 2010. View at Zentralblatt MATH
  8. Z.-Y. Xing, Y. Qin, X.-M. Pang, L.-M. Jia, and Y. Zhang, “Modelling of the automatic depth control electrohydraulic system using RBF neural network and genetic algorithm,” Mathematical Problems in Engineering, vol. 2010, Article ID 124014, 16 pages, 2010.
  9. A. L. Yu, “Research on the dynamic modeling based on genetic wavelet neural network for the robot wrist force sensor,” Acta Physica Sinica, vol. 57, no. 6, pp. 3385–3390, 2008. View at Scopus
  10. L. JinKun, The Design and MATLAB Simulation of Robot Control System, Tsinghua University, Beijing, China, 2008.
  11. C. G. Looney, “Radial basis functional link nets and fuzzy reasoning,” Neurocomputing, vol. 48, pp. 489–509, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Z. Xing, Robotics, Tsinghua University, Beijing, China, 2000.
  13. S. Y. Chen, J. Zhang, H. Zhang, N. M. Kwok, and Y. F. Li, “Intelligent lighting control for vision-based robotic manipulation,” IEEE Transactions on Industrial Electronics. In press.
  14. Y. Zhao and C. C. Cheah, “Hybrid vision-force control for robot with uncertainties,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 261–266, May 2004. View at Scopus
  15. S. Chiaverini and L. Sciavicco, “Force/position regulation of compliant robotmanipulators,” IEEE Transactions on Robotics and Automation, vol. 9, no. 4, pp. 361–373, 1993.
  16. Z. Doulgeri and S. Arimoto, “A position/force control for a robot finger with soft tip and uncertain kinematics,” Journal of Robotic Systems, vol. 19, no. 3, pp. 115–131, 2002. View at Publisher · View at Google Scholar · View at Scopus