About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 597474, 13 pages
http://dx.doi.org/10.1155/2012/597474
Research Article

Decomposition of the Time Reversal Operator for Target Detection

1MOE Key Laboratory of Mechanical Manufacture and Automation, Zhejiang University of Technology, Hangzhou 310014, China
2Zhejiang Key Laboratory of Signal Processing, Zhejiang University of Technology, Hangzhou 310014, China
3Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China

Received 8 September 2012; Revised 6 November 2012; Accepted 12 November 2012

Academic Editor: Fatih Yaman

Copyright © 2012 Chun-xiao Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. P. Hermand and W. I. Roderick, “Acoustic model-based matched filter processing for fading time-dispersive ocean channels: theory and experiment,” IEEE Journal of Oceanic Engineering, vol. 18, no. 4, pp. 447–465, 1993. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Friedlander and A. Zeira, “Detection of broadband signals in frequency and time dispersive channels,” IEEE Transactions on Signal Processing, vol. 44, no. 7, pp. 1613–1622, 1996. View at Publisher · View at Google Scholar · View at Scopus
  3. P. M. Baggenstoss, “On detecting linear frequency-modulated waveforms in frequency- and time-dispersive channels: alternatives to segmented replica correlation,” IEEE Journal of Oceanic Engineering, vol. 19, no. 4, pp. 591–598, 1994. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Roux and M. Fink, “Time reversal in a waveguide: study of the temporal and spatial focusing,” Journal of the Acoustical Society of America, vol. 107, no. 5, pp. 2418–2429, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Prada, F. Wu, and M. Fink, “The iterative time reversal mirror: a solution to self-focusing in the pulse echo mode,” Journal of the Acoustical Society of America, vol. 90, no. 2, pp. 1119–1129, 1991. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Mordant, C. Prada, and M. Fink, “Highly resolved detection and selective focusing in a waveguide using the D.O.R.T. method,” Journal of the Acoustical Society of America, vol. 105, no. 5, pp. 2634–2642, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Prada and M. Fink, “Separation of interfering acoustic scattered signals using the invariants of the time—reversal operator: application to Lamb waves characterization,” Journal of the Acoustical Society of America, vol. 104, no. 2, pp. 801–807, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Prada, J. L. Thomas, and M. Fink, “The iterative time reversal process: analysis of the convergence,” Journal of the Acoustical Society of America, vol. 97, no. 1, pp. 62–71, 1995. View at Publisher · View at Google Scholar · View at Scopus
  9. J. L. Li, H. F. Zhao, and W. Fang, “Experimental investigation of selective localisation by decomposition of the time reversal operator and subspace-based technique,” IET Radar, Sonar and Navigation, vol. 2, no. 6, pp. 426–434, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. J. M. F. Moura and Y. Jin, “Detection by time reversal: single antenna,” IEEE Transactions on Signal Processing, vol. 55, no. 1, pp. 187–201, 2007. View at Publisher · View at Google Scholar
  11. Y. Jin and J. M. F. Moura, “Time-reversal detection using antenna arrays,” IEEE Transactions on Signal Processing, vol. 57, no. 4, pp. 1396–1414, 2009. View at Publisher · View at Google Scholar
  12. C. X. Li, W. Xu, J. L. Li, and X. Y. Gong, “Time-reversal detection of multidimensional signals in underwater acoustics,” IEEE Journal of Oceanic Engineering, vol. 36, no. 1, pp. 60–70, 2011. View at Publisher · View at Google Scholar
  13. S. Y. Chen, H. Tong, and C. Cattani, “Markov models for image labeling,” Mathematical Problems in Engineering, vol. 2012, Article ID 814356, 18 pages, 2012. View at Publisher · View at Google Scholar
  14. C. Cattani, S. Chen, and G. Aldashev, “Information and modeling in complexity,” Mathematical Problems in Engineering, vol. 2012, Article ID 868413, 4 pages, 2012. View at Publisher · View at Google Scholar
  15. S. Y. Chen, “Kalman filter for robot vision: a survey,” IEEE Transactions on Industrial Electronics, vol. 59, no. 11, pp. 4409–4420, 2012. View at Publisher · View at Google Scholar
  16. H. C. Song, W. S. Hodgkiss, W. A. Kuperman, K. G. Sabra, T. Akal, and M. Stevenson, “Passive reverberation nulling for target enhancement,” Journal of the Acoustical Society of America, vol. 122, no. 6, pp. 3296–3303, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. J. F. Lingevitch, H. C. Song, and W. A. Kuperman, “Time reversed reverberation focusing in a waveguide,” Journal of the Acoustical Society of America, vol. 111, no. 6, pp. 2609–2614, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Prada, J. De Rosny, D. Clorennec et al., “Experimental detection and focusing in shallow water by decomposition of the time reversal operator,” Journal of the Acoustical Society of America, vol. 122, no. 2, pp. 761–768, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Bose and A. O. Steinhardt, “Adaptive array detection of uncertain rank one waveforms,” IEEE Transactions on Signal Processing, vol. 44, no. 11, pp. 2801–2809, 1996. View at Publisher · View at Google Scholar · View at Scopus
  20. S. M. Kay, Fundamentals of Statistical Signal Processing, Detection Theory, Prentice Hall, PTR Press, Upper Saddle River, NJ, USA, 1998.
  21. L. L. Scharf, Statistical Signal Processing: Detection, Estimation, and Time Series Analysis, Addison-Wesley Press, New York, NY, USA, 1991.
  22. M. B. Porter, “The KRAKEN normal mode program,” Memorandum SM-245, 1991.
  23. A. Aubry and A. Derode, “Detection and imaging in a random medium: a matrix method to overcome multiple scattering and aberration,” Journal of Applied Physics, vol. 106, no. 4, Article ID 044903, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Aubry and A. Derode, “Singular value distribution of the propagation matrix in random scattering media,” Waves in Random and Complex Media, vol. 20, pp. 333–363, 2010. View at Publisher · View at Google Scholar