About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 635738, 14 pages
http://dx.doi.org/10.1155/2012/635738
Research Article

Haar-Wavelet-Based Just Noticeable Distortion Model for Transparent Watermark

1Department of Electrical Engineering, National Central University, Chungli City 320-01, Taiwan
2Department of Computer Science and Information Engineering, National United University, Miaoli 360-03, Taiwan
3Department of Electronics Engineering, Chung Hua University, Hsinchu City 300-12, Taiwan

Received 3 June 2011; Accepted 5 July 2011

Academic Editor: Carlo Cattani

Copyright © 2012 Lu-Ting Ko et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. J. Cox, J. Kilian, F. T. Leighton, and T. Shamoon, “Secure spread spectrum watermarking for multimedia,” IEEE Transactions on Image Processing, vol. 6, no. 12, pp. 1673–1687, 1997. View at Scopus
  2. M. D. Swanson, M. Kobayashi, and A. H. Tewfik, “Multimedia data-embedding and watermarking technologies,” Proceedings of the IEEE, vol. 86, no. 6, pp. 1064–1087, 1998. View at Scopus
  3. M. Barni, F. Bartolini, and A. Piva, “Improved wavelet-based watermarking through pixel-wise masking,” IEEE Transactions on Image Processing, vol. 10, no. 5, pp. 783–791, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Kutter and S. Winkler, “A vision-based masking model for spread-spectrum image watermarking,” IEEE Transactions on Image Processing, vol. 11, no. 1, pp. 16–25, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. C. De Vleeschouwer, J. F. Delaigle, and B. Macq, “Invisibility and application functionalities in perceptual watermarking - An overview,” Proceedings of the IEEE, vol. 90, no. 1, pp. 64–77, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. Q. Li, C. Yuan, and Y. Z. Zhong, “Adaptive DWT-SVD domain image watermarking using human visual model,” in Proceedings of the 9th International Conference on Advanced Communication Technology (ICACT '07), pp. 1947–1951, February 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Autrusseau and P. L. Callet, “A robust image watermarking technique based on quantization noise visibility thresholds,” Signal Processing, vol. 87, no. 6, pp. 1363–1383, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. H. S. Moon, T. You, M. H. Sohn, H. S. Kim, and D. S. Jang, “Expert system for low frequency adaptive image watermarking: using psychological experiments on human image perception,” Expert Systems with Applications, vol. 32, no. 2, pp. 674–686, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Qi, D. Zheng, and J. Zhao, “Human visual system based adaptive digital image watermarking,” Signal Processing, vol. 88, no. 1, pp. 174–188, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Koz and A. A. Alatan, “Oblivious spatio-temporal watermarking of digital video by exploiting the human visual system,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 18, no. 3, pp. 326–337, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Y. Chen, Y. F. Li, and J. Zhang, “Vision processing for realtime 3-D data acquisition based on coded structured light,” IEEE Transactions on Image Processing, vol. 17, no. 2, pp. 167–176, 2008. View at Publisher · View at Google Scholar
  12. S. Y. Chen, H. Tong, Z. Wang, S. Liu, M. Li, and B. Zhang, “Improved generalized belief propagation for vision processing,” Mathematical Problems in Engineering, vol. 2011, Article ID 416963, 12 pages, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  13. S. Y. Chen and Q. Guan, “Parametric shape representation by a deformable NURBS model for cardiac functional measurements,” IEEE Transactions on Biomedical Engineering, vol. 58, no. 3, pp. 480–487, 2011. View at Publisher · View at Google Scholar
  14. N. Jayant, “Signal compression: technology targets and research directions,” IEEE Journal on Selected Areas in Communications, vol. 10, pp. 314–323, 1992.
  15. N. Jayant, J. Johnston, and R. Safranek, “Signal compression based on models of human perception,” Proceedings of the IEEE, vol. 81, no. 10, pp. 1385–1422, 1993. View at Publisher · View at Google Scholar · View at Scopus
  16. R. F. Boyer and R. S. Spencer, “Thermal expansion and second-order transition effects in high polymers: part II. Theory,” Journal of Applied Physics, vol. 16, no. 10, pp. 594–607, 1945. View at Publisher · View at Google Scholar · View at Scopus
  17. A. K. Jain, Fundamentals of Digital Image Processing, Prentice-Hall, Englewood Cliffs, NJ, USA, 1989.
  18. X. Yang, W. Lin, Z. Lu, E. Ong, and S. Yao, “Motion-compensated residue preprocessing in video coding based on just-noticeable-distortion profile,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 15, no. 6, pp. 742–751, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Pandel, “Variable bit-rate image sequence coding with adaptive quantization,” Signal Processing, vol. 3, no. 2-3, pp. 123–128, 1991. View at Scopus
  20. B. Girod, “Psychovisual aspects of image communication,” Signal Processing, vol. 28, no. 3, pp. 239–251, 1992. View at Scopus
  21. C. H. Chou and Y. C. Li, “Perceptually tuned subband image coder based on the measure of just-noticeable-distortion profile,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 5, no. 6, pp. 467–476, 1995. View at Publisher · View at Google Scholar · View at Scopus
  22. B. S. Kim, I. J. Shim, M. T. Lim, and Y. J. Kim, “Combined preorder and postorder traversal algorithm for the analysis of singular systems by Haar wavelets,” Mathematical Problems in Engineering, vol. 2008, Article ID 323080, 16 pages, 2008. View at Publisher · View at Google Scholar
  23. G. Mattioli, M. Scalia, and C. Cattani, “Analysis of large-amplitude pulses in short time intervals: application to neuron interactions,” Mathematical Problems in Engineering, vol. 2010, Article ID 895785, 15 pages, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  24. C. Cattani, “Harmonic wavelet approximation of random, fractal and high frequency signals,” Telecommunication Systems, vol. 43, no. 3-4, pp. 207–217, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Cattani, “Shannon wavelets theory,” Mathematical Problems in Engineering, vol. 2008, Article ID 164808, 24 pages, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  26. A. Kudreyko and C. Cattani, “Application of periodized harmonic wavelets towards solution of eigenvalue problems for integral equations,” Mathematical Problems in Engineering, vol. 2010, Article ID 570136, 8 pages, 2010. View at Publisher · View at Google Scholar
  27. M. Li and W. Zhao, “Representation of a stochastic traffic bound,” IEEE Transactions on Parallel and Distributed Systems, vol. 21, no. 9, Article ID 5342414, pp. 1368–1372, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Li, “Generation of teletraffic of generalized Cauchy type,” Physica Scripta, vol. 81, no. 2, Article ID 025007, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Li, “Fractal time series-a tutorial review,” Mathematical Problems in Engineering, vol. 2010, Article ID 157264, 26 pages, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  30. E. G. Bakhoum and C. Toma, “Specific mathematical aspects of dynamics generated by coherence functions,” Mathematical Problems in Engineering, vol. 2011, Article ID 436198, 10 pages, 2011. View at Publisher · View at Google Scholar
  31. E. G. Bakhoum and C. Toma, “Dynamical aspects of macroscopic and quantum transitions due to coherence function and time series events,” Mathematical Problems in Engineering, vol. 2010, Article ID 428903, 13 pages, 2010. View at Publisher · View at Google Scholar
  32. E. G. Bakhoum and C. Toma, “Mathematical transform of traveling-wave equations and phase aspects of quantum interaction,” Mathematical Problems in Engineering, vol. 2010, Article ID /695208, 15 pages, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  33. T. Y. Sung and H. C. Hsin, “A hybrid image coder based on SPIHT algorithm with embedded block coding,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E90-A, no. 12, pp. 2979–2984, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. H. C. Hsin and T. Y. Sung, “Adaptive selection and rearrangement of wavelet packets for quad-tree image coding,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E91-A, no. 9, pp. 2655–2662, 2008. View at Publisher · View at Google Scholar · View at Scopus