About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 671397, 13 pages
http://dx.doi.org/10.1155/2012/671397
Research Article

Contextual Hierarchical Part-Driven Conditional Random Field Model for Object Category Detection

College of Mechatronics Engineering and Automation, National University of Defense Technology, Changsha 410073, China

Received 25 October 2012; Accepted 11 November 2012

Academic Editor: Sheng-yong Chen

Copyright © 2012 Lizhen Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Schnitzspan, S. Roth, and B. Schiele, “Automatic discovery of meaningful object parts with latent CRFs,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR ’10), pp. 121–128, San Diego, Calif, USA, June 2010.
  2. J. H. Zhang, J. W. Zhang, S. Y. Chen, et al., “Constructing dynamic category hierarchies for novel visual category discovery,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '12), Vilamoura, Portugal, October 2012.
  3. S. Y. Chen, J. H. Zhang, Y. F. Li, and J. W. Zhang, “A hierarchical model incorporating segmented regions and pixel descriptors for video background subtraction,” IEEE Transactions on Industrial Informatics, vol. 8, no. 1, pp. 118–127, 2012.
  4. M. Fischler and R. A. Elschlager, “The representation and matching of pictorial structures,” IEEE Transactions on Computers, vol. 22, no. 1, pp. 67–92, 1973. View at Scopus
  5. S. Lazebnik, C. Schmid, and J. Ponce, “A maximum entropy framework for part-based texture and object recognition,” in Proceedings of the 10th IEEE International Conference on Computer Vision (ICCV '05), pp. 832–838, Beijing, China, October 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Crandall, P. Felzenszwalb, and D. Huttenlocher, “Spatial priors for part-based recognition using statistical models,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '05), pp. 10–17, San Diego, Calif, USA, June 2005. View at Scopus
  7. R. Fergus, P. Perona, and A. Zisserman, “Object class recognition by unsupervised scale-invariant learning,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '03), pp. II/264–II/271, San Diego, Calif, USA, June 2003. View at Scopus
  8. P. F. Felzenszwalb and D. P. Huttenlocher, “Pictorial structures for object recognition,” International Journal of Computer Vision, vol. 61, no. 1, pp. 55–79, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. E. B. Sudderth, A. Torralba, W. T. Freeman, and A. S. Willsky, “Describing visual scenes using transformed objects and parts,” International Journal of Computer Vision, vol. 77, no. 1–3, pp. 291–330, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Kumar, Models for learning spatial interactions in natural images for context-based classification [Ph.D. thesis], The Robotics Institute, Carnegie Mellon University, 2005.
  11. J. Lafferty, A. McCallum, and F. Pereira, “Conditional random fields: Probabilistic models for segmenting and labeling sequence data,” in Proceedings of the Proceedings of the 18th International Conference on Machine Learning (ICML '01), pp. 282–289, 2001.
  12. S. Kumar and M. Hebert, “Discriminative fields for modeling spatial dependencies in natural images,” Advances in Neural Information Processing Systems, pp. 1351–1358, 2004.
  13. S. Kumar and M. Hebert, “Discriminative random fields: A discriminative framework for contextual interaction in classification,” in Proceedings of the International Conference on Computer Vision (ICCV '03), vol. 2, pp. 1150–1157, Nice, France, October 2003. View at Scopus
  14. S. Kumar and M. Hebert, “Multiclass discriminative fields for parts-based object detection,” in Snowbird Learning Workshop, March 2004.
  15. A. Quattoni, S. Wang, L. P. Morency, M. Collins, and T. Darrell, “Hidden conditional random fields,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 10, pp. 1848–1853, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Kapoor and J. Winn, “Located hidden random fields: Learning discriminative parts for object detection,” in Proceedings of the European Conference on Computer Vision (ECCV '06), pp. 302–315, Vienna, Austria, May 2006.
  17. S. Y. Chen, H. Tong, and C. Cattani, “Markov models for image labeling,” Mathematical Problems in Engineering, vol. 2012, Article ID 814356, 18 pages, 2012. View at Publisher · View at Google Scholar
  18. C. Cattani, S. Y. Chen, and G. Aldashev, “Information and modeling in complexity,” Mathematical Problems in Engineering, vol. 2012, Article ID 868413, 3 pages, 2012. View at Publisher · View at Google Scholar
  19. S. Y. Chen, H. Tong, Z. Wang, S. Liu, M. Li, and B. Zhang, “Improved generalized belief propagation for vision processing,” Mathematical Problems in Engineering, vol. 2011, Article ID 416963, 12 pages, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  20. S. Gu, Y. Zheng, and C. Tomasi, “Critical nets and beta-stable features for image matching,” in Proceedings of the 11th European Conference on Computer Vision (ECCV '10), vol. 6313 of Lecture Notes in Computer Science, pp. 663–676, 2010. View at Publisher · View at Google Scholar
  21. D. G. Lowe, “Object recognition from local scale-invariant features,” in Proceedings of the 7th IEEE International Conference on Computer Vision (ICCV'99), pp. 1150–1157, Kerkyra, Greece, September 1999. View at Scopus