About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 690268, 16 pages
http://dx.doi.org/10.1155/2012/690268
Research Article

Time-Based Separation for Aircraft Landing Using Danger Value Distribution Flow Model

Institute of Civil Aviation, National Cheng Kung University, Tainan 70101, Taiwan

Received 20 July 2012; Accepted 21 November 2012

Academic Editor: Chuangxia Huang

Copyright © 2012 Ta-Chung Wang and Chih-Hsiang Tsao. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Freville and J.-P. Nicolaon, “Potential benefits of a time-based separation procedure to maintain the arrival capacity of an airport in strong head-wind condictions,” in Proceedings of the 5th USA/Europe Air Traffic Management Research and Development Seminar, 2003.
  2. M. Janic, “Toward time-based separation rules for landing aircraft,” Journal of the Transportation Research Record, no. 2052, pp. 79–89, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Abela, D. Abramson, M. Krishnamoorthy, A. D. Silva, and G. Mills, “Computing optimal schedules for landing aircraft,” in Proceedings of the 12th National Conference of the Australian Society for Operations Research, pp. 71–90, July 1993.
  4. L. Bianco, P. Dell'Olmo, and A. R. Odoni, Modelling and Simulation in Air Traffic Management, Springer, New York, NY, USA, 1997.
  5. J. E. Beasley, M. Krishnamoorthy, Y. M. Sharaiha, and D. Abramson, “Scheduling aircraft landings—the static case,” Transportation Science, vol. 34, no. 2, pp. 180–197, 2000. View at Scopus
  6. J. E. Beasley, M. Krishnamoorthy, Y. M. Sharaiha, and D. Abramson, “Displacement problem and dynamically scheduling aircraft landings,” Journal of the Operational Research Society, vol. 55, no. 1, pp. 54–64, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Helmke, R. Hann, M. Uebbing-Rumke, D. Müller, and D. Wittkowski, “Time-based arrival management for dual threshold operation and continous descent approaches,” in Proceedings of the 8th USA/Europe Air Traffic Management Research and Development Seminar, 2009.
  8. M. J. Lighthill and G. B. Whitham, “On kinematic waves. I. Flood movement in long rivers,” Proceedings of the Royal Society A, vol. 229, pp. 281–316, 1955. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  9. M. J. Lighthill and G. B. Whitham, “On kinematic waves. II. A theory of traffic flow on long crowded roads,” Proceedings of the Royal Society A, vol. 229, pp. 317–345, 1955. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  10. P. I. Richards, “Shock waves on the highway,” Operations Research, vol. 4, pp. 42–51, 1956. View at Publisher · View at Google Scholar
  11. L. Leclercq, “Hybrid approaches to the solutions of the "Lighthill-Whitham-Richards" model,” Transportation Research B, vol. 41, no. 7, pp. 701–709, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Sun, I. S. Strub, and A. M. Bayen, “Comparison of the performance of four Eulerian network flow models for strategic air traffic management,” Networks and Heterogeneous Media, vol. 2, no. 4, pp. 569–595, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  13. P. K. Menon, G. D. Sweriduk, T. Lam, G. M. Diaz, and K. D. Bilimoria, “Computer-aided Eulerian air traffic flow modeling and predictive control,” in Proceedings of the Collection of Technical Papers—AIAA Guidance, Navigation, and Control Conference, pp. 2683–2697, August 2004. View at Scopus
  14. P. K. Menon, G. D. Sweriduk, and K. D. Bilimoria, “New approach for modeling, analysis, and control of air traffic flow,” Journal of Guidance, Control, and Dynamics, vol. 27, no. 5, pp. 737–744, 2004. View at Scopus
  15. P. K. Menon, G. D. Sweriduk, T. Lam, G. M. Diaz, and K. D. Bilimoria, “Computer-aided eulerian air traffic flow modeling and predictive control,” Journal of Guidance, Control, and Dynamics, vol. 29, no. 1, pp. 12–19, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. C. A. Robelin, D. Sun, G. Wu, and A. M. Bayen, “MILP control of aggregate Eulerian network airspace models,” in Proceedings of the 2006 American Control Conference, pp. 5257–5262, June 2006. View at Scopus
  17. A. M. Bayen, R. L. Raffard, and C. J. Tomlin, “Eulerian network model of air traffic flow in congested areas,” in Proceedings of the 2004 American Control Conference (AAC), vol. 6, pp. 5520–5526, July 2004. View at Scopus
  18. A. M. Bayen, R. L. Raffard, and C. J. Tomlin, “Adjoint-based control of a new Eulerian network model of air traffic flow,” IEEE Transactions on Control Systems Technology, vol. 14, no. 5, pp. 804–818, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. A. M. Bayen, Computational control of networks of dynamical systems: application to the national airspace system [Ph.D. dissertation], Stanford University, 2003.
  20. D. Sun, S. D. Yang, I. Strub, A. M. Bayen, B. Sridhar, and K. Sheth, “Eulerian trilogy,” in Proceedings of the AIAA Guidance, Navigation, and Control Conference, pp. 1680–1699, August 2006. View at Scopus