About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 704989, 14 pages
http://dx.doi.org/10.1155/2012/704989
Research Article

Suitable Environmental Flow Release Criteria for Both Human and Riverine Ecosystems: Accounting for the Uncertainty of Flows

State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China

Received 16 November 2012; Accepted 11 December 2012

Academic Editor: Yongping Li

Copyright © 2012 Jian Tang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. E. Petts, “Instream flow science for sustainable river management,” Journal of the American Water Resources Association, vol. 45, no. 5, pp. 1071–1086, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. R. A. Wurbs, “Modeling river/reservoir system management, water allocation, and supply reliability,” Journal of Hydrology, vol. 300, no. 1–4, pp. 100–113, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. B. Rajagopalan, K. Nowak, J. Prairie et al., “Water supply risk on the Colorado River: can management mitigate?” Water Resources Research, vol. 45, no. 8, Article ID W08201, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. X. A. Yin and Z. F. Yang, “Development of a coupled reservoir operation and water diversion model: balancing human and environmental flow requirements,” Ecological Modelling, vol. 222, no. 2, pp. 224–231, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. S. K. Jain, “Assessment of environmental flow requirements,” Hydrological Processes, vol. 26, no. 22, pp. 3472–3476, 2012. View at Publisher · View at Google Scholar
  6. M. A. Palmer, C. A. Reidy Liermann, C. Nilsson et al., “Climate change and the world's river basins: anticipating management options,” Frontiers in Ecology and the Environment, vol. 6, no. 2, pp. 81–89, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. P. B. McIntyre, S. Glidden, S. E. Bunn, C. A. Sullivan, C. R. Liermann, and P. M. Davies, “Global threats to human water security and river biodiversity,” Nature, vol. 467, no. 7315, pp. 555–561, 2010. View at Publisher · View at Google Scholar
  8. K. H. Bowmer, “Water resource protection in Australia: links between land use and river health with a focus on stubble farming systems,” Journal of Hydrology, vol. 403, no. 1-2, pp. 176–185, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. R. M. Vogel, J. Sieber, S. A. Archfield, M. P. Smith, C. D. Apse, and A. Huber-Lee, “Relations among storage, yield, and instream flow,” Water Resources Research, vol. 43, no. 5, Article ID W05403, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. F. Yang, T. Sun, B. S. Cui, B. Chen, and G. Q. Chen, “Environmental flow requirements for integrated water resources allocation in the Yellow River Basin, China,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 5, pp. 2469–2481, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. X.-A. Yin, Z.-F. Yang, and G. E. Petts, “Reservoir operating rules to sustain environmental flows in regulated rivers,” Water Resources Research, vol. 47, no. 8, Article ID 7206, 2011. View at Publisher · View at Google Scholar
  12. N.-S. Hsu, C.-H. Chiang, W.-M. Cheng, and C.-C. Wei, “Study on the trade-off between ecological base flow and optimized water supply,” Water Resources Management, vol. 26, no. 11, pp. 3095–3112, 2012. View at Publisher · View at Google Scholar
  13. M. R. Su, Z. F. Yang, G. Y. Liu, and B. Chen, “Ecosystem health assessment and regulation for urban ecosystems: a case study of the yangtze river delta urban cluster, China,” Journal of Environmental Informatics, vol. 18, no. 2, pp. 65–74, 2011. View at Publisher · View at Google Scholar
  14. C. Zheng, W. Yang, and Z. F. Yang, “Strategies for managing environmental flows based on the spatial distribution of water quality: a case study of Baiyangdian Lake, China,” Journal of Environmental Informatics, vol. 18, no. 2, pp. 84–90, 2011. View at Publisher · View at Google Scholar
  15. L. Jing and B. Chen, “Field investigation and hydrological modelling of a subarctic wetland-the Deer River watershed,” Journal of Environmental Informatics, vol. 17, no. 1, pp. 36–45, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. M. C. Acreman and A. J. D. Ferguson, “Environmental flows and the European Water Framework Directive,” Freshwater Biology, vol. 55, no. 1, pp. 32–48, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. B. D. Richter, “A method for assessing hydrologic alteration within ecosystems,” Conservation Biology, vol. 10, no. 4, pp. 1163–1174, 1996. View at Publisher · View at Google Scholar · View at Scopus
  18. B. D. Richter, J. V. Baumgartner, R. Wigington, and D. P. Braun, “How much water does a river need?” Freshwater Biology, vol. 37, no. 1, pp. 231–249, 1997. View at Scopus
  19. M. J. Kennard, B. J. Pusey, J. D. Olden, S. J. MacKay, J. L. Stein, and N. Marsh, “Classification of natural flow regimes in Australia to support environmental flow management,” Freshwater Biology, vol. 55, no. 1, pp. 171–193, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. D. L. Tennant, “Instream flow regimens for fish, wildlife, recreation and related environmental resources,” Fisheries, vol. 1, no. 4, pp. 6–10, 1976.
  21. K. D. Bovee, B. L. Lamb, J. M. Bartholow, C. B. Stalnaker, J. G. Taylor, and J. Henriksen, Stream Habitat Analysis Using the Instream Flow Incremental Methodology, US. Fish and Wildlife Service, 1998.
  22. N. L. Poff, B. D. Richter, A. H. Arthington et al., “The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards,” Freshwater Biology, vol. 55, no. 1, pp. 147–170, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. O. T. Gorman and J. R. Karr, “Habitat structure and stream fish communities,” Ecology, vol. 59, pp. 507–515, 1978.
  24. N. L. Poff and J. V. Ward, “Physical habitat template of lotic systems: recovery in the context of historical pattern of spatiotemporal heterogeneity,” Environmental Management, vol. 14, no. 5, pp. 629–646, 1990. View at Scopus
  25. D. A. Lytle and N. L. Poff, “Adaptation to natural flow regimes,” Trends in Ecology and Evolution, vol. 19, no. 2, pp. 94–100, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. A. H. Arthington, S. E. Bunn, N. L. Poff, and R. J. Naiman, “The challenge of providing environmental flow rules to sustain river ecosystems,” Ecological Applications, vol. 16, no. 4, pp. 1311–1318, 2006. View at Scopus
  27. N. L. Poff and J. K. H. Zimmerman, “Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows,” Freshwater Biology, vol. 55, no. 1, pp. 194–205, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Postel and B. Richter, Rivers for Life: Managing Water for People and Nature, Island Press, Washington, DC, USA, 2003.
  29. A. F. Casper, B. Dixon, J. Earls, and J. A. Gore, “Linking a spatially explicit watershed model (SWAT) with an in-stream fish habitat model (PHABSIM): a case study of setting minimum flows and levels in a low gradient, sub-tropical river,” River Research and Applications, vol. 27, no. 3, pp. 269–282, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. J. T. Shiau and F. C. Wu, “Feasible diversion and instream flow release using range of variability approach,” Journal of Water Resources Planning and Management, vol. 130, no. 5, pp. 395–404, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. J. T. Shiau and F. C. Wu, “Compromise programming methodology for determining instream flow under multiobjective water allocation criteria,” Journal of the American Water Resources Association, vol. 42, no. 5, pp. 1179–1191, 2006. View at Scopus
  32. J. W. Labadie, “Optimal operation of multireservoir systems: state-of-the-art review,” Journal of Water Resources Planning and Management, vol. 130, no. 2, pp. 93–111, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. N. K. Ajami, G. M. Hornberger, and D. L. Sunding, “Sustainable water resource management under hydrological uncertainty,” Water Resources Research, vol. 44, no. 11, Article ID W11406, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. P. Li and G. H. Huang, “Fuzzy-stochastic-based violation analysis method for planning water resources management systems with uncertain information,” Information Sciences, vol. 179, no. 24, pp. 4261–4276, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. P. Li, G. H. Huang, Y. F. Huang, and H. D. Zhou, “A multistage fuzzy-stochastic programming model for supporting sustainable water-resources allocation and management,” Environmental Modelling and Software, vol. 24, no. 7, pp. 786–797, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. P. Li, G. H. Huang, and S. L. Nie, “Planning water resources management systems using a fuzzy-boundary interval-stochastic programming method,” Advances in Water Resources, vol. 33, no. 9, pp. 1105–1117, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. P. Li and G. H. Huang, “Inexact joint-probabilistic stochastic programming for water resources management under uncertainty,” Engineering Optimization, vol. 42, no. 11, pp. 1023–1037, 2010. View at Publisher · View at Google Scholar · View at MathSciNet
  38. Y. P. Li, G. H. Huang, S. L. Nie, and X. Chen, “A robust modeling approach for regional water management under multiple uncertainties,” Agricultural Water Management, vol. 98, no. 10, pp. 1577–1588, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Q. Suo, Y. P. Li, and G. H. Huang, “An inventory-theory-based interval-parameter two-stage stochastic programming model for water resources management,” Engineering Optimization, vol. 43, no. 9, pp. 999–1018, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  40. Y. O. Kim, H. I. Eum, E. G. Lee, and I. H. Ko, “Optimizing operational policies of a Korean multireservoir system using sampling stochastic dynamic programming with ensemble streamflow prediction,” Journal of Water Resources Planning and Management, vol. 133, no. 1, pp. 4–14, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. M. J. Kennard, S. J. Mackay, B. J. Pusey, J. D. Olden, and N. Marsh, “Quantifying uncertainty in estimation of hydrologic metrics for ecohydrological studies,” River Research and Applications, vol. 26, no. 2, pp. 137–156, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. J. T. Shiau and F. C. Wu, “A histogram matching approach for assessment of flow regime alteration: application to environmental flow optimization,” River Research and Applications, vol. 24, no. 7, pp. 914–928, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Liu, C. Jiang, and Y. Zhang, “Portfolio management of hydropower producer via stochastic programming,” Energy Conversion and Management, vol. 50, no. 10, pp. 2593–2599, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. K. Høyland and S. W. Wallace, “Generating scenario trees for multistage decision problems,” Management Science, vol. 47, no. 2, pp. 295–307, 2001.
  45. D. W. Watkins Jr., D. C. McKinney, L. S. Lasdon, S. S. Nielsen, and Q. W. Martind, “A scenario-based stochastic programming model for water supplies from the highland lakes,” International Transactions in Operational Research, vol. 7, no. 3, pp. 211–230, 2000.
  46. S. Wang and G. H. Huang, “Identifying optimal water resources allocation strategies through an interactive multi-stage stochastic fuzzy programming approach,” Water Resources Management, vol. 26, no. 7, pp. 2015–2038, 2012. View at Publisher · View at Google Scholar
  47. J. Dupačová, G. Consigli, and S. W. Wallace, “Scenarios for multistage stochastic programs,” Annals of Operations Research, vol. 100, pp. 25–53, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  48. H. Brand, E. Thorin, and C. Weber, “Scenario reduction algorithm and creation of multi-stage scenario trees,” Optimization of Cogeneration Systems in a Competitive Market Environment, Discussion Paper no. 7, 2002.
  49. B. D. Richter, J. V. Baumgartner, D. P. Braun, and J. Powell, “A spatial assessment of hydrologic alteration within a river network,” River Research and Applications, vol. 14, no. 4, pp. 329–340, 1998. View at Scopus
  50. J. T. Shiau and F. C. Wu, “Assessment of hydrologic alterations caused by chi-chi diversion weir in Chou-Shui Creek, Taiwan: opportunities for restoring natural flow conditions,” River Research and Applications, vol. 20, no. 4, pp. 401–412, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. J. T. Shiau and F. C. Wu, “Pareto-optimal solutions for environmental flow schemes incorporating the intra-annual and interannual variability of the natural flow regime,” Water Resources Research, vol. 43, no. 6, Article ID W06433, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. O. Marinoni, A. Higgins, S. Hajkowicz, and K. Collins, “The multiple criteria analysis tool (MCAT): a new software tool to support environmental investment decision making,” Environmental Modelling and Software, vol. 24, no. 2, pp. 153–164, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. P. Fattahi and S. Fayyaz, “A compromise programming model to integrated urban water management,” Water Resources Management, vol. 24, no. 6, pp. 1211–1227, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. G. E. Petts, Impounded Rivers: Perspectives for Ecological Management, Environmental Monographs and Symposia Series, John Wiley and Sons, Chichester, UK, 1984.