About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 769376, 19 pages
http://dx.doi.org/10.1155/2012/769376
Research Article

Numerical Analysis of Constrained, Time-Optimal Satellite Reorientation

Department of Aerospace Engineering, Pennsylvania State University, 229 Hammond Building., University Park, PA 16802, USA

Received 11 July 2011; Accepted 11 October 2011

Academic Editor: Josep Masdemont

Copyright © 2012 Robert G. Melton. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. D. Bilimoria and B. Wie, “Time-optimal three-axis reorientation of a rigid spacecraft,” Journal of Guidance, Control, and Dynamics, vol. 16, no. 3, pp. 446–452, 1993. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Shen and P. Tsiotras, “Time-optimal control of axisymmetric rigid spacecraft using two controls,” Journal of Guidance, Control, and Dynamics, vol. 22, no. 5, pp. 682–694, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. R. J. Proulx and I. M. Ross, “Time-optimal reorientation of asymmetric rigid bodies,” in Proceedings of Advances in the Astronautical Sciences AAS/AIAA Astodynamics Conference, vol. 109, pp. 1207–1227, August 2002. View at Scopus
  4. S. L. Scrivener and R. C. Thompson, “Time-optimal reorientation of a rigid spacecraft using collocation and nonlinear programming,” in Proceedings of Advances in the Astronautical Sciences AAS/AIAA Astodynamics Conference, vol. 85, pp. 1905–1924, August 1993. View at Scopus
  5. S. W. Liu and T. Singh, “Fuel/time optimal control of spacecraft maneuvers,” Journal of Guidance, Control, and Dynamics, vol. 20, no. 2, pp. 394–397, 1997. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  6. X. Bai and J. L. Junkins, “New results for time-optimal three-axis reorientation of a rigid spacecraft,” Journal of Guidance, Control, and Dynamics, vol. 32, no. 4, pp. 1071–1076, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. H. B. Hablani, “Attitude commands avoiding bright objects and maintaining communication with ground station,” Journal of Guidance, Control, and Dynamics, vol. 22, no. 6, pp. 759–767, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Mengali and A. A. Quarta, “Spacecraft control with constrained fast reorientation and accurate pointing,” Aeronautical Journal, vol. 108, no. 1080, pp. 85–91, 2004. View at Scopus
  9. R. G. Melton, “Constrained time-optimal slewing maneuvers for rigid spacecraft,” in Proceedings of the Advances in the Astronautical Sciences AAS/AIAA Astrodynamics Specialist Conference, vol. 135, pp. 107–126, Univelt, San Diego, Calif, USA, 2010.
  10. Swift, http://heasarc.nasa.gov/docs/swift/swiftsc.html.
  11. A. E. Bryson and Y.-C. Ho, Applied Optimal Control: Optimization, Estimation and Control, Hemisphere Publishing, New York, NY, USA, 1975.
  12. A. Fleming and I. M. Ross, “Minimum-time maneuvering of CMG-driven spacecraft,” in Proceedings of the Advances in the Astronautical Sciences AAS/AIAA Astrodynamics Specialist Conference, vol. 129, pp. 1623–1644, 2007.
  13. I. M. Ross, “A beginner’s guide to DIDO (ver 7.3): a MATLAB application package for solving optimal control problems,” Tech. Rep. TR-711, Elissar LLC, Monterey, Calif, USA, 2007.
  14. Q. Gong, I. M. Ross, W. Kang, and F. Fahroo, “Connections between the covector mapping theorem and convergence of pseudospectral methods for optimal control,” Computational Optimization and Applications, vol. 41, no. 3, pp. 307–335, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  15. I. Michael Ross, Q. Gong, and P. Sekhavat, “Low-thrust, high-accuracy trajectory optimization,” Journal of Guidance, Control, and Dynamics, vol. 30, no. 4, pp. 921–933, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Ahmed, H. Chaal, and D. W. Gu, “Spacecraft controller tuning using particle swarm optimization,” in Proceedings of the International Joint Conference 2009 (ICCAS-SICE '09), pp. 73–78, August 2009. View at Scopus
  17. M. R. Sentinella and L. Casalino, “Cooperative evolutionary algorithm for space trajectory optimization,” Celestial Mechanics and Dynamical Astronomy, vol. 105, no. 1, pp. 211–227, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  18. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C++, The Art of Scientific Computing, Cambridge University Press, 2nd edition, 2002.
  19. T. R. Kane, P. W. Likins, and D. A. Levinson, Spacecraft Dynamics, McGraw-Hill, 1983.
  20. H. Goldstein, Classical Mechanics, Addison-Wesley, 2nd edition, 1981.
  21. J. W. Gibbs., Vector Analysis, edited by E. B. Wilson, Scribner, 1901; Yale University Press, London, UK, 1931.