About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 802420, 15 pages
http://dx.doi.org/10.1155/2012/802420
Research Article

Multiscale Numerical Study of 3D Polymer Crystallization during Cooling Stage

Department of Computational Mathematics, Henan University of Science and Technology, Luoyang 471003, China

Received 18 May 2012; Accepted 23 July 2012

Academic Editor: Hung Nguyen-Xuan

Copyright © 2012 Chunlei Ruan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Swaminarayan and C. Charbon, “A multiscale model for polymer crystallization. I: growth of individual spherulites,” Polymer Engineering and Science, vol. 38, no. 4, pp. 634–643, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Yang, X. R. Fu, W. Yang, L. Huang, M. B. Yang, and J. M. Feng, “Numerical prediction of phase-change heat conduction of injection-molded high density polyethylene thick-walled parts via the enthalpy transforming model with mushy zone,” Polymer Engineering and Science, vol. 48, no. 9, pp. 1707–1717, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Charbon and S. Swaminarayan, “A multiscale model for polymer crystallization. II: solidification of a macroscopic part,” Polymer Engineering and Science, vol. 38, no. 4, pp. 644–656, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Huang and M. R. Kamal, “Morphological modeling of polymer solidification,” Polymer Engineering and Science, vol. 40, no. 8, pp. 1796–1808, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Prabhu, J. Schultz, S. G. Advani, and K. I. Jacob, “Role of coupling microscopic and macroscopic phenomena during the crystallization of semicrystalline polymers,” Polymer Engineering and Science, vol. 41, no. 11, pp. 1871–1885, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Ruan, J. Ouyang, and S. Liu, “Multi-scale modeling and simulation of crystallization during cooling in short fiber reinforced composites,” International Journal of Heat and Mass Transfer, vol. 55, no. 7-8, pp. 1911–1921, 2012. View at Publisher · View at Google Scholar
  7. D. Raabe, “Mesoscale simulation of spherulite growth during polymer crystallization by use of a cellular automaton,” Acta Materialia, vol. 52, no. 9, pp. 2653–2664, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Raabe and A. Godara, “Mesoscale simulation of the kinetics and topology of spherulite growth during crystallization of isotactic polypropylene (iPP) by using a cellular automaton,” Modelling and Simulation in Materials Science and Engineering, vol. 13, no. 5, pp. 733–751, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. J. X. Lin, C. Y. Wang, and Y. Y. Zheng, “Prediction of isothermal crystallization parameters in monomer cast nylon 6,” Computers and Chemical Engineering, vol. 32, no. 12, pp. 3023–3029, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Le Goff, G. Poutot, D. Delaunay, R. Fulchiron, and E. Koscher, “Study and modeling of heat transfer during the solidification of semi-crystalline polymers,” International Journal of Heat and Mass Transfer, vol. 48, no. 25-26, pp. 5417–5430, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. V. Capasso, Mathematical Modelling for Polymer Processing, vol. 2 of Mathematics in Industry, Springer, Berlin, Germany, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  12. R. Pantani, I. Coccorullo, V. Speranza, and G. Titomanlio, “Modeling of morphology evolution in the injection molding process of thermoplastic polymers,” Progress in Polymer Science, vol. 30, no. 12, pp. 1185–1222, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Pantani, I. Coccorullo, V. Speranza, and G. Titomanlio, “Morphology evolution during injection molding: effect of packing pressure,” Polymer, vol. 48, no. 9, pp. 2778–2790, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. J. D. Hoffman and R. L. Miller, “Kinetics of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment,” Polymer, vol. 38, no. 13, pp. 3151–3212, 1997. View at Publisher · View at Google Scholar · View at Scopus
  15. S. V. Patankar, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, NY, USA, 1980.
  16. C. Ruan, J. Ouyang, S. Liu, and L. Zhang, “Computer modeling of isothermal crystallization in short fiber reinforced composites,” Computers and Chemical Engineering, vol. 35, no. 11, pp. 2306–2317, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. Q. Zheng, Y. Shangguan, S. Yan, Y. Song, M. Peng, and Q. Zhang, “Structure, morphology and non-isothermal crystallization behavior of polypropylene catalloys,” Polymer, vol. 46, no. 9, pp. 3163–3174, 2005. View at Publisher · View at Google Scholar · View at Scopus