About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 841410, 36 pages
http://dx.doi.org/10.1155/2012/841410
Research Article

Solving Constrained Global Optimization Problems by Using Hybrid Evolutionary Computing and Artificial Life Approaches

Department of Business Administration, Lunghwa University of Science and Technology, No. 300, Section 1, Wanshou Road, Guishan, Taoyuan County 333, Taiwan

Received 28 February 2012; Revised 15 April 2012; Accepted 19 April 2012

Academic Editor: Jung-Fa Tsai

Copyright © 2012 Jui-Yu Wu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This work presents a hybrid real-coded genetic algorithm with a particle swarm optimization (RGA-PSO) algorithm and a hybrid artificial immune algorithm with a PSO (AIA-PSO) algorithm for solving 13 constrained global optimization (CGO) problems, including six nonlinear programming and seven generalized polynomial programming optimization problems. External RGA and AIA approaches are used to optimize the constriction coefficient, cognitive parameter, social parameter, penalty parameter, and mutation probability of an internal PSO algorithm. CGO problems are then solved using the internal PSO algorithm. The performances of the proposed RGA-PSO and AIA-PSO algorithms are evaluated using 13 CGO problems. Moreover, numerical results obtained using the proposed RGA-PSO and AIA-PSO algorithms are compared with those obtained using published individual GA and AIA approaches. Experimental results indicate that the proposed RGA-PSO and AIA-PSO algorithms converge to a global optimum solution to a CGO problem. Furthermore, the optimum parameter settings of the internal PSO algorithm can be obtained using the external RGA and AIA approaches. Also, the proposed RGA-PSO and AIA-PSO algorithms outperform some published individual GA and AIA approaches. Therefore, the proposed RGA-PSO and AIA-PSO algorithms are highly promising stochastic global optimization methods for solving CGO problems.