About this Journal Submit a Manuscript Table of Contents
Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 848519, 17 pages
http://dx.doi.org/10.1155/2012/848519
Research Article

Detection and Isolation of Simultaneous Additive and Parametric Faults in Nonlinear Stochastic Dynamical Systems

Departamento Matemática Aplicada a las Tecnologías de la Información, ETSI Telecomunicación, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain

Received 31 August 2012; Revised 28 November 2012; Accepted 6 December 2012

Academic Editor: Huaguang Zhang

Copyright © 2012 Andrés Cuervo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Basseville and I. V. Nikiforov, Detection of Abrupt Changes: Theory and Application, Prentice Hall Information and System Sciences Series, Prentice Hall, Englewood Cliffs, NJ, USA, 1993.
  2. J. J. Gertler, Fault Detection and Diagnosis in Engineering Systems, Marcel Dekker, 1998.
  3. R. Iserman, Fault-Diagnosis Systems: An Introduction to Fault Detection and Fault Tolerance, Springer, New York, NY, USA, 2006.
  4. M. M. Polycarpou and A. T. Vemuri, “Learning methodology for failure detection and accommodation,” IEEE Control Systems Magazine, vol. 15, no. 3, pp. 16–24, 1995. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Biswas, M. O. Cordier, J. Lunze, L. Travé-Massuyès, and M. Staroswiecki, “Diagnosis of complex systems: bridging the methodologies of the FDI and DX communities,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 34, no. 5, pp. 2159–2162, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. P. M. Frank, “Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy. A survey and some new results,” Automatica, vol. 26, no. 3, pp. 459–474, 1990. View at Publisher · View at Google Scholar · View at Scopus
  7. E. A. García and P. M. Frank, “Deterministic nonlinear observer-based approaches to fault diagnosis: a survey,” Control Engineering Practice, vol. 5, no. 5, pp. 663–670, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. P. M. Frank, “Analytical and qualitative model-based fault diagnosis: a survey and some new results,” European Journal of Control, vol. 11, no. 2, pp. 26–28, 1996.
  9. C. De Persis and A. Isidori, “A geometric approach to nonlinear fault detection and isolation,” IEEE Transactions on Automatic Control, vol. 46, no. 6, pp. 853–865, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  10. M. M. Polycarpou and A. B. Trunov, “Learning approach to nonlinear fault diagnosis: detectability analysis,” IEEE Transactions on Automatic Control, vol. 45, no. 4, pp. 806–812, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  11. Z. Wang and H. Zhang, “Design of a bilinear fault detection observer for singular bilinear systems,” Journal of Control Theory and Applications, vol. 5, no. 1, pp. 28–36, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  12. X. Zhang, T. Parisini, and M. M. Polycarpou, “Sensor bias fault isolation in a class of nonlinear systems,” IEEE Transactions on Automatic Control, vol. 50, no. 3, pp. 370–376, 2005. View at Publisher · View at Google Scholar
  13. B. Jiang, M. Staroswiecki, and V. Cocquempot, “Fault accommodation for nonlinear dynamic systems,” IEEE Transactions on Automatic Control, vol. 51, no. 9, pp. 1578–1583, 2006. View at Publisher · View at Google Scholar
  14. M. Du, Fault diagnosis and fault tolerant control of chemical process systems [Ph.D. thesis], McMaster University, 2012.
  15. H. Yang, B. Jiang, V. Cocquempot, and H. Zhang, “Stabilization of switched nonlinear systems with all unstable modes: application to multi-agent systems,” IEEE Transactions on Automatic Control, vol. 56, no. 9, pp. 2230–2235, 2011. View at Publisher · View at Google Scholar
  16. X. Zhang, M. M. Polycarpou, and T. Parisini, “Design and analysis of a fault isolation scheme for a class of uncertain nonlinear systems,” Annual Reviews in Control, vol. 32, no. 1, pp. 107–121, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. X. Zhang, M. M. Polycarpou, and T. Parisini, “Fault diagnosis of a class of nonlinear uncertain systems with Lipschitz nonlinearities using adaptive estimation,” Automatica, vol. 46, no. 2, pp. 290–299, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  18. M. Basseville, “On-board component fault detection and isolation using the statistical local approach,” Automatica, vol. 34, no. 11, pp. 1391–1415, 1998. View at Scopus
  19. S. Tafazoli and X. Sun, “Hybrid system state tracking and fault detection using particle filters,” IEEE Transactions on Control Systems Technology, vol. 14, no. 6, pp. 1078–1087, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. Q. Zhang, F. Campillo, F. Cérou, and F. LeGland, “Nonlinear system fault detection and isolation based on bootstrap particle filters,” in Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, (CDC-ECC '05), pp. 3821–3826, December 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Xu and Q. Zhang, “Nonlinear system fault diagnosis based on adaptive estimation,” Automatica, vol. 40, no. 7, pp. 1181–1193, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  22. M. W. Hofbaur and B. C. Williams, “Hybrid estimation of complex systems,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 34, no. 5, pp. 2178–2191, 2004. View at Publisher · View at Google Scholar
  23. A. Castillo, Fault detection and isolation via continuous time statistics [Ph.D. thesis], E.T.S. Ingenieros Industriales (Universidad Politcnica de Madrid), 2006.
  24. A. Castillo and P. J. Zufiria, “Fault detection schemes for continuous-time stochastic dynamical systems,” IEEE Transactions on Automatic Control, vol. 54, no. 8, pp. 1820–1836, 2009. View at Publisher · View at Google Scholar
  25. U. Münz and P. J. Zufiria, “Diagnosis of unknown parametric faults in non-linear stochastic dynamical systems,” International Journal of Control, vol. 82, no. 4, pp. 603–619, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. P. J. Zufiria, “A formulation for fault detection in stochastic continuous-time dynamical systems,” International Journal of Computer Mathematics, vol. 86, no. 10-11, pp. 1778–1797, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  27. P. J. Zufiria, “Analysis of the detectability time in fault detection schemes for continuous-time systems,” in Proceedings of the International Conference Computational and Mathematical Methods in Science and Engineering (CMMSE '09), vol. 4, pp. 1151–1162, Gijón, Spain, 2009.
  28. A. Castillo and P. J. Zufiria, “Fault isolation schemes for a class of continuous-time stochastic dynamical systems,” In press.
  29. P. J. Zufiria, “A mathematical framework for new fault detection schemes in nonlinear stochastic continuous-time dynamical systems,” Applied Mathematics and Computation, vol. 218, no. 23, pp. 11391–11403, 2012. View at Publisher · View at Google Scholar
  30. B. E. Goodlin, D. S. Boning, H. H. Sawin, and B. M. Wise, “Simultaneous fault detection and classification for semiconductor manufacturing tools,” Journal of the Electrochemical Society, vol. 150, no. 12, pp. G778–G784, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Li and J. E. Braun, “A methodology for diagnosing multiple-simultaneous faults in rooftop air conditioners,” in Proceedings of the International Refrigeration and Air Conditioning Conference, no. paper 667, 2004, http://docs.lib.purdue.edu/iracc/667.
  32. Y. I. Lu and J. Pond, “Analysis of simutaneous faults using short circuit simulations and fault records,” in Proceedings of the Georgia Tech Fault and Disturbance Analysis Conference, May 2008.
  33. I. Yélamos, G. Escudero, M. Graells, and L. Puigjaner, “Simultaneous fault diagnosis in chemical plants using support vector machines,” in Proceedings of the 17th European Symposium on Computer Aided Process Engineering (ESCAPE '07), V. Plesu and P. S. Agachi, Eds., Elsevier, 2007.
  34. E. Bullinger and F. Allgower, “An adaptive high-gain observer for nonlinear systems,” in Proceedings of the 36th IEEE Conference on Decision and Control, pp. 4348–4353, San Diego, Calif, USA, December 1997. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Tornambè, “High-gain observers for nonlinear systems,” International Journal of Systems Science, vol. 23, no. 9, pp. 1475–1489, 1992. View at Publisher · View at Google Scholar
  36. M. Reble, U. Münz, and F. Allgöwer, “Diagnosis of parametric faults in multivariable nonlinear systems,” in Proceedings of the 46th IEEE Conference on Decision and Control (CDC '07), pp. 366–371, New Orleans, La, USA, December 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Papoulis, Probability, Random Variables, and Stochastic Processes, McGraw-Hill, New York, 1965.
  38. X. Zhang, M. M. Polycarpou, and T. Parisini, “A robust detection and isolation scheme for abrupt and incipient faults in nonlinear systems,” IEEE Transactions on Automatic Control, vol. 47, no. 4, pp. 576–593, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH